PERFORMANCE OF CONVENTIONALLYPOWERED VEHICLES TESTED TO ANELECTRIC VEHICLE TEST PROCEDURE
(NASA-TM-73768) PERFORMANCE OF N78-20022CONVENTIONALIY PONERED VEHICLES TESTED TO ANELECTRIC VEHICLE TEST PROCEDURE (NASA) 62 pHC A04/MF AOT CSCI $13 F$
Ralph J. Stavik, Miles 0. Dustin
and Stacy LumannickNatıonal Aeronautics and Space AdminıstrationLewis Research Center
Cleveland, Ohio 44135
December 1977

Prepared for
DEPARTMENT OF ENERGY
Division of Transportation Energy Conservation
Under Interagency Agreement EC-77-A-31-1011

NOTICE
This report was prepared to document work sponsored by the United States Government Neither the United States nor 1 ts agent, the United States Energy Research and Development Administration, nor any Federal employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liabılity ox responsibllity for the accuracy, completeness, or usefulness of any information, apparatus, product or process diselosed, or represents that its use would not infringe privately owned raghts.

* For sale by the National Technical Information Service Sprongield Virginia 22161

The Electric and Hybrid Vehicle Program was conducted under the guidance of the then Energy Research and Development Administration (ERDA), now part of the Department of Energy.

PERFORMANCE OF CONVENTIONALLY
 POWERED VEHICLES TESTED TO AN
 ELECTRIC VEHICLE TEST PROCEDURE
 Ralph J. Slavik, Miles O. Dustin,
 and Stacy Lumannick

SUMMARY
A conventional Volkswagen Transporter, a Renault 5, an American Motors Corp. Pacer, and a U.S. Postal Service American Motors General DJ-5 delivery van were tested to an electric vehicle test procedure in order to allow direct comparison of conventional and electric vehicles. These vehicles were tested at the Transportation Research Center of Ohio Test Track near East Liberty, Ohio. The tests were conducted between July 26 and August 16 , 1977. The tests are part of an Energy Research and Development Administration (ERDA) project to characterize the state-of-the-art of electric vehicles. The performance test results for the four vehicles are presented in this report.

The Volkswagen Transporter (Minibus) is a delivery van powered by a 2.0-liter, four-cylinder opposed, air-cooled, fuel-injected engine. Power is transmitted through a four-speed, manual-shift transaxle.

The Renault 5 is a passenger vehicle powered by a carbureted, l.3-liter, four-cylinder in-line, liquid-cooled engine. Power is transmıtted through a four-speed, manual-shift transaxle.

The AMC Pacer is a passenger vehicle powered by a carbureted 4.2-liter, six-cylinder in-line, liquid-cooled engine. Power is transmitted through a three-speed, manual-shift transmission and a separate differential axle assembly.

The 'U.S. Postal Service vehicle is an AM General DJ-5. It is powered by a carbureted, 3.8-liter, six-cylinder in-line, liquid-cooled engine. Power is transmitted through. a three-speed automatic transmission and a separate differential axle assembly.

Two series of tests were conducted on the vehicles. One serles was performed at a test weight equivalent to the vehicle's curb weight plus its electric vehicle counterpart's payload. The other series was performed at a test weight equivalent to the gross vehicle weight 1 isted on
the placard attached to the vehicle body. The test weights were as follows:

Vehacle	Curb weight plus electric vehicle payload		Placard-Insted gross vehscle weight	
	kg	lbm	kg	lbm
Volkswagen Transporter	2100	4630	2300	5090
Renault 5	1025	2260	1130	2490
AMC Pacer	1787	3940	1965	4330
AM General DJ-5	1500	3305	1500	3305

Acceleration times from a standing start were as follows:

Vehacle	Test speed, km / h (mph)			
	32 (20)	48 (30)	72 (45)	97 (60)
	Time to reach test speed from standing start, s			
Volkswagen Transporter	4.9	9.7	19.5	39.0
Renault 5	3.3	5.5	10.0	18.0
AMC Pacer	4.1	6.5	12.6	17.6
AM General $\mathrm{DJ}^{\text {-5 }}$	4.8	8.2	11.1	20.8

Gradeability limits were as follows:

Vehıcle	Gradeabılity limıt, percent
Volkswagen Transporter	24
Renault 5	43
AMC Pacer	30
AM General DJ-5	49

ORIGINAL PAGE IS
OF POOR QUALITY

The measured and corrected fuel economies for the four vehicles at both test welghts are presented in tables I to VII. A fairly consistent reduction in fuel economy occurred as the test speed or test weight increased. The better fuel economy measured for the higher speed schedule D tests, as compared with the schedule B or C test results, is due to
the relatively longer time and greater distance traveled at constant speed per cycle during schedule D.

INTRODUCTION

The vehicle tests and the data presented in this report are in support of Public Law 94-413 enacted by Congress on September 17,1976 . The law requires the Energy Research and Development Administration (ERDA) to develop data characterizing the state-of-the-art of electric and hybrid vehicles. The data so developed are to serve as a baseline (1) to compare improvements in electric and hybrid vehicle technologles, (2) to assist in establishing performance standards for electric and hybrid vehicles, and (3) to help guide future research and development activities.

The National Aeronautics and Space Administration (NASA), under the darection of the Electric and Hybrid Research, Development, and Demonstration Office of the Division of Transportation Energy Conservation of ERDA, has conducted track tests of electric vehicles to measure their performance characteristics and vehicle component efficlencies. The tests were conducted according to ERDA Electric and Hybrid Vehicle Test and Evaluation Procedure, described in appendix E of reference l. This procedure is based on the Society of Automotive Engineers (SAE) J227a procedure. Seventeen electric vehicles have been tested under this phase of the program, 12 by NASA, 4 by MERADCOM, and 1 by the Canadian government. In addition, the Lewis Research Center tested conventionally powered counterparts of four of the electric vehicles under the same test procedure. The Energy Research and Development Administration provided funding support and guidance during this project.

Until now, no controlled test data had existed that would allow the performance of electric vehicles to be compared with the performance of conventionally powered vehicles of a similar type driven over the same test schedule. This report describes limited tests on four conventional vehicles according to the ERDA Electric and Hybrid Vehicle Test and Evaluation Procedure. The vehicles were selected because they are conventional counterparts of electric vehicles previously tested by NASA. Neither type of vehicle was necessarily of optimum design for the tests performed. Nevertheless, the tests do permit a useful comparison of energy economy and performance under controlled conditions.
U.S. customary units were used in the collection and reduction of data, with the exception of fuel flow and fuel
temperature, which were collected in metric units. The units were converted to the International System of Units for presentation in this report. U.S. customary units are presented in parentheses. The parameters, symbols, units, and unit abbreviations used in this report are listed here for the convenience of the reader.

Parameter	Symbol	SI unlts		U.S. customary units	
		UnIt	Abbreviation	Unit	Abbreviation
Acceleration Area Correction factor Energy Energy consumption Energy economy Force Fuel economy Integrated current Length Mass, welght Power Pressure Range Specific energy ${ }^{+}$ Specific power Speed Temperature Volume		meter per second squared square meter \qquad megajoule megajoule per kilometer megajoule per kilometer newton kilometer per litex ampere hour meter kılogram kılowatt kilopascal kılometer megajoule per kilogram kılowatt per kilogram kılometer per hour degrees Celsius cublc meter	m / s m^{2} \qquad MJ $\mathrm{MJ} / \mathrm{km}$ $\mathrm{MJ} / \mathrm{km}$ N km/lıter Ah m kg kw kPa km $\mathrm{MJ} / \mathrm{kg}$ kW/kg km / h ${ }^{\circ} \mathrm{C}$ m^{3}	mıle per hour per second square foot, square inch \qquad kılowatt hour kilowatt hour per mile kilowatt hour per mile pound force miles per gallon ampere hour inch, foot, mxle pound mass horsepower pound per square inch mile watt hour per pound kılowatt per pound mile per hour degrees Fahrenhelt cublc inch, cuble foot	mph/s $\mathrm{ft}{ }^{2}, \mathrm{~m}^{2}$ kWh $\mathrm{kWh} / \mathrm{mile}$ kWh/mile lbf mpg Ah 1n., ft, --- 1bm hp DS1 --- Wh/lbm $\mathrm{kW} / \mathrm{lbm}$ mph O_{F} $\mathrm{nn}^{3} ; \mathrm{ft}^{3}$

OBJECTIVES

The objectives of these track tests were to determine. conventional vehicle performance characteristics and to compare these characteristics with those of their electric vehicle counterparts. The measured characteristics included fuel economy at constant speed and under stop-and-go driving schedules, maximum acceleration, gradeability, gradeability limit, road energy consumption, and road power.

TEST VEHICLE DESCRIPTIONS

The Volkswagen Transporter is a three-door van powered by an air-cooled, four-cylinder opposed engine of 2.0 -liter displacement. Fuel flow is through an electronic injection system that uses individual injectors manifolded together.

Regular-grade gasoline is the recommended fuel. The engine and a four-speed manual transaxle are located in the rear, below the cargo area. Constant-velocity joints on the drive train permit independent suspension on all four wheels. Disk brakes are used on front wheels and drum brakes on the rear wheels. The Volkswagen Transporter is shown in figure 1.

The Renault 5 is a two-door sedan. It is powered by a liquid-cooled, four-cylinder in-line engine of 1.3-liter displacement. The fuel-air mixture is controlled by carburetion. Regular-grade gasoline is the recommended fuel. The engine and a four-speed manual transaxle are located in the front. Two drive shafts with constant-velocity joints on the drive train allow independent suspension on all four wheels. Disk brakes are used on front wheels and drum brakes on the rear wheels. The Renault 5 is shown in figure 2.

The AMC Pacer is a two-door sedan powered by a liquid-cooled, six-cylinder in-line engine of 4.2-liter displacement. The fuel-air mixture is controlled by carburetion. Unleaded gasoline is required for operation. The engine and a three-speed manual transmission are located in the front. The rear wheels are driven through the rigid differential rear axle assembly. The front wheels are independently suspended from the frame. Disk brakes are used on the front wheels and drum brakes on the rear wheels. The AMC Pacer is shown in figure 3.

The American Motors General (AMG) U.S. Postal Service DJ-5 is a two-door, single-passenger delivery vehicle. It is powered by a liquid-cooled, six-cylinder in-line engine of 3.8-liter displacement. The fuel-air mixture is metered by carburetion. Unleaded gasoline is specified for operation. The engine and a three-speed automatic transmission are located in the front. The rear wheels are driven through the rigid differential rear axle assembly. The front axle is also a rigid assembly. Drum brakes are used on all wheels. The AMG DJ-5 is shown in figure 4.

More complete descriptions of the vehicles are given in appendixes A to D.

INSTRUMENTATION

The conventional vehicles were each instrumented to measure vehicle speed, distance traveled, total fuel flow, fuel temperature, and elapsed time. The speed and distance were recorded on a two-channel, strip-chart recorder. Fuel temperature, accumulated distance, total fuel flow, and the elapsed time of the test were displayed on digital readouts.

A Nucleus Corporation Model NC-7 precision speedometer (fifth wheel) was used to measure vehicle speed and distance traveled. Auxiliary equipment used with the fifth wheel included a Model ERP-Xl pulse totalizer, a Model ESS/E expanded-scale speedometer, and a programmable digital attenuator. The fifth wheel and auxiliaries weighed about 22.7 kilograms (50 lbm). A typical installation of the fifth wheel on a test vehicle is shown in figure 5. The fifth-wheel speed was calibrated during constant-speed test runs. While the driver maintained a given constant speed, another person, standing adjacent to the vehicle path of travel, verified the vehicle speed by using a kustom Electronics Model HR8 radar gun. The accuracy of the fifth wheel as evaluated by these checks was ± 1.6 kilometers per hour ($\pm \mathrm{l} \mathrm{mph}$). The fifth-wheel distance digital readout accuracy was checked against mile markers placed around the track at 0.16-kilometer (0.l-mile) intervals. The accuracy of the distance measurements was determined to be ± 0.5 percent.

Accumulated fuel flow, fuel temperature, and elapsed time of each test were measured and displayed using Fluidyne Model 1250 and Model 1240 flowmeter packages. The Model 1250 displayed fuel flow in l-cubic-centimeter increments, and the Model 1240 in 0.1 -cubic-centimeter increments. The accuracy of flow measurements was 1 percent for flow rates above 0.1 cubic centimeter per second for the Model 1240, and 1 percent for flow rates above 0.3 cubic centimeter per second for the Model l250. The accuracy was 0.5 percent for flow rates from 0.4 to 120 cubic centimeters per second for the Model 1250. The accuracy of the fuel temperatures was determined to be within ± 0.5 degree Celsius and the accuracy of elapsed time measurements within 0.01 percent, on both models.

The vehicle speed and distance were recorded on Honeywell 195 Electronik two-channel, strip-chart recorders. The accuracy of this recorder is within +0.5 percent. The recorders used during the test program were calibrated with a Hewlett-Packard Model 6920 B meter calibrator, which has a $0.2-p e r c e n t-o f-r e a d i n g ~ a c c u r a c y ~ a n d ~ a ~ u s a b l e ~ r a n g e ~ o f ~ 0.01 ~$ to 1000 volts.

Power for the fifth wheel and inverter was provided from two 12 -volt starting, lighting, and ignition (SLI) batteries that were connected in parallel and weighed about 23 kilograms (50 lbm) each. A Tripp Lite 500 -watt DC/AC inverter, weighing about 9 kilograms (20 lbm), provided the $A C$ power for the strip charts. Power for the fuel flowmeter was obtained from the vehicle's l2-volt power system.

Figure 6 shows the instrumentation installed in one of the test vehicles.

TEST PROCEDURES

The tests described in this report were performed at the Transportation Research Center of Ohio Test Track, a four-lane, l2-kilometer (7.5-mile) track located near East Liberty, Ohio. A complete description of the track is given in appendix E. When the vehicle was delivered to the test track, the pretest checks described in appendix F were conducted. The first test was a shakedown to famıliarize the driver with the operating characteristics of the vehicle and to check out the instrumentation systems.

A series of tests were conducted at test weights equivalent to the curb weights of their corresponding electric vehicle counterparts. A second series was completed at test weights corresponding to the gross vehicle weight listed on the placard attached to the body of each vehicle. The AM General DJ-5 payload weight was the same in both cases and, therefore, only one test series was conducted. Vehicle test weights were as follows:

Vehicle	Curb welght plus electric vehlcle payload		Placard-lısted gross vehıcle welght	
	kg	lbm	kg	1 bm
Volkswagen Transporter	2100	4630	2300	5090
Renault 5	1025	2260	1130	2490
AMC Pacer	1787	3940	1965	4330
AM General DJ-5	1500	3305	1500	3305

Constant-speed fuel economy was measured at 40,56 , and 72 kilometers per hour (25,35 , and 45 mph) and at the maximum speeds of the electric vehicle counterparts where these speeds differed from one of the selected test speeds. Thus, the Volkswagen Transporter was tested at 69 kilometers per hour (43 mph), the AMC Pacer at 82 kilometers per hour (51 mph), and the AM General DJ-5 at 48 kilometers per hour (30 mph). Tests were run at least twice on each vehicle at each speed. All constant-speed tests were made over a distance of 12 kilometers (7.5 miles).

The 32-kilometer-per-hour ($20-\mathrm{mph}$) schedule B; the 48-kilometer-per-hour ($30-\mathrm{mph}$) schedule C ; and the 72-kilometer-per-hour ($45-\mathrm{mph}$) schedule D stop-and-go driving cycles defined in figure 7 were run with all four
vehicles. Thirty-six schedule B cycles, 22 schedule C, and 9 schedule D cycles were run for distances of about 12 kilometers (7.5 miles) each.

A complete description of the cycle tests is given in ERDA Electric and Hybrid Vehicle Test and Evaluation Procedure ERDA-EHV-TEP, contained in appendix E of reference 1. A special instrument, called a cycle timer, was developed at the Lewis Research Center to assist in accurately running these tests. Details of the cycle timer are given in appendix F.

Acceleration and Coast-down Tests

The maximum acceleration of each vehicle was measured. Four runs, two on each straight section of the track, were conducted on each vehicle. Coast-down data were taken immediately after the acceleration run with the transmission selector lever placed in the neutral position. Acceleration and deceleration were measured between zero and 97 kilometers per hour (60 mph). The test specification required that the tests be conducted in opposite directions over the same surface, but track safety regulations prohibited reversing the direction of travel. However, the track has a constant and equal slope on both straight sections and the surfaces are similar. So the test data are comparable to what would have been obtained under the specified conditions.

TEST RESULTS

The data collected from the constant-speed and driving schedule tests are summarized in tables I to VII. Shown for each type of test are the ambient conditions, fuel temperature, total fuel flow, test distance, and fuel economy. Some of the tests were conducted under calm or steady low-wind conditions, and some under variable and gusty conditions. Wind conditions frequently varied around the track from the conditions at the point of measurement because of the high banked curves and the large size of the facility. Local shower conditions were experienced occasionally. When these occurred in only one portion of the track, testing was continued as long as less than 25 percent of the track was wet. Occasionally some tests were conducted in winds with measured speeds greater than the 16-kilometer-per-hour (l0-mph) limit. The highest recorded average wind speed during a test was 24 kilometers per hour (15 mph). Some of the test runs were also conducted after dark using the vehicle lights. There is no indication that these variations in the test conditions significantly affected the test results.

Fuel Economy

Two tests each at constant speeds of 72,56 , and 40 kilometers per hour (45, 35, and 25 mph) and two tests each over SAE J227a schedules D, C, and B were made on each test vehicle at each test weight in order to measure fuel economy under the same test conditions as for the electric vehicle counterparts. In addition, constant-speed tests were run at 69 kilometers per hour (43 mph) on the Volkswagen Transporter, at 82 kilometers per hour (5l mph) on the AMC Pacer, and at 48 kilometers per hour (30 mph) on the AM Genral DJ-5 at each test weight. These speeds represented the maximum speeds of the electric vehicle counterparts of those vehicles. Test results for the constant-speed and cycle tests are summarized in tables I to VII.

Additional tests were conducted when repeatability wathin +5 percent was not achleved in the first tests. Additional tests were performed on the Volkswagen Transporter at $72,69,56$, and 40 kilometers per hour (45, 43,35 , and 25 mph) and under schedule C, on the Renault 5 at 56 and 50 kilometers per hour (35 and 25 mph) and under schedule C, and on the AMC Pacer at 82 and 40 kilometers per hour (51 and 25 mph) and under schedule D . Addtional tests were also required on the Renault 5 at 72,56 , and 40 kilometers per hour (45,35 , and 25 mph) because the carburetor malfunctioned and on the AMC Pacer under schedules C and B because of driver errors.

Fuel economy was calculated from the raw test data by using the procedure recommended in the SAE Fuel Economy Measurement - Road Test Procedure Jl082 (ref. 2). The corrections for atmospheric pressure and fuel specific gravity variations were neglected.

The correction for atmospheric pressure varlations was evaluated. Standard pressure is 98 kPa ($29.00 \mathrm{in} . \mathrm{Hg}$). The worst-case effect of this factor resulted in a 0.12 percent correction, so it was neglected. The specific gravity of the fuel was not measured during the test program because this correction is also negliglble. Standard APIgr is 60.50. The correction for fuel economy, as used in this report, is

Fuel economy $(\mathrm{mpg})=\mathrm{mpg} \times \mathrm{T}_{\mathrm{S}} \mathrm{CF}_{1} \times \mathrm{T}_{\mathrm{F}} \mathrm{CF}_{2}$
where
mpg measured fuel economy, miles per gallon

CF correction factor
T_{S} ambient air temperature, of
T_{F} fuel temperature, OF

$$
\mathrm{T}_{\mathrm{S}} \mathrm{CF}_{1}=1+0.0014\left(60-\mathrm{T}_{\mathrm{S}}\right)
$$

and

$$
\mathrm{T}_{\mathrm{F}} \mathrm{CF}_{2}=\frac{1}{1+0.0006\left(\mathrm{~T}_{\mathrm{F}}-60\right)}
$$

This corrects the data to SAE standard temperature conditions of $15.6^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{F}\right)$.

Maximum Acceleration

The maximum acceleration of each vehicle was measured. The results of the tests are shown in figure 8 and table VIII. Higher acceleration and gradeability may be obtained with the Volkswagen Transporter by shifting at different speeds.

The average acceleration was calculated for the time period t_{n-1} to t_{n} from the equation

$$
\bar{a}_{n}=\frac{v_{n}-v_{n-1}}{t_{n}-t_{n-1}}
$$

and the average speed of the vehicle $\overline{\mathrm{V}}$ from the equation

$$
\bar{v}=\frac{v_{n}+v_{n-1}}{2}
$$

Average acceleration as a function of speed is shown in figure 9 and table VIII.

Gradeability
The maximum vehicle speed on a specific grade was determined from maximum acceleration tests by using the equations
$G=100 \tan \left(\sin ^{-1} 0.1026 \bar{a}_{n}\right) \quad$ for V in km / h
or
$G=100 \tan \left(\sin ^{-1} 0.0455 \bar{a}_{n}\right) \quad$ for $\overline{\mathrm{V}}$ in mph
in U.S. customary units
where \vec{a}_{n} is acceleration in meters per second squared (mph/sec).

The resulting maximum negotiable grades as a function of speed are shown in figure 10 and table VIII.

Road Energy
Road energy is a measure of the energy consumed per unit of distance in overcoming the vehicle's aerodynamic and rolling resistance plus the energy consumed in the differential drive shaft and the portion of the transmission rotating when in neutral. It was obtained during coast-down, when the differential was being driven by the wheels, and thus may be different than the energy consumed when the differential is being druven by the engine.

Road energy consumption was calculated from the following equations:

$$
E_{n}=2.78 \times 10^{-4} W \frac{V_{n-1}-V_{n}}{t_{n}-t_{n-1}}, M J / k m
$$

or

$$
E_{n}=9.07 \times 10^{-5} W \frac{V_{n-1}-v_{n}}{t_{n}-t_{n-1}}, \mathrm{kWh} / \mathrm{mile}
$$

where

W vehicle mass, kg (lbm)
V vehicle speed, km/h (mph)
t time, sec
The results of the road energy calculations are shown in figure 11 and table IX.

Road Power Requirements
The road power calculation is analogous to the road energy calculation. Road power is a measure of the power needed to overcome vehicle aerodynamic and rolling resistance plus the power losses from the differential, the drive shaft, and a portion of the transmission. The road power P_{n} required to propel a vehicle at various speeds is also determined from the coast-down tests. The following equations are used:

$$
P_{n}=3.86 \times 10^{-5} W \frac{V_{n-1}^{2}-v_{n}^{2}}{t_{n}-t_{n-1}}, \mathrm{~kW}
$$

or

$$
P_{n}=6.08 \times 10^{-5} w \frac{v_{n-1}^{2}-v_{n}^{2}}{t_{n}-t_{n-1}}, \mathrm{hp}
$$

The results of road power calculations are shown in figure 12 and table IX.

DISCUSSION OF RESULTS
Energy consumption, acceleration, and gradeability data have been obtained for the Volkswagen Transporter (ref. 3),
the Waterman Renault 5 (ref. 4), the EVA Change-of-Pace Coupe (ref. 5), and the AM General DJ-5E Electruck (ref. 6) electric vehlcles. These data are compared in this section with the data obtanned for their conventional vehicle counterparts carrying the same payload weight.

Energy for the electric and conventional vehicles is compared in table X. The comparison is made for the $40-\mathrm{kilometer-per-hour} \mathrm{(25-mph)}, \mathrm{constant-speed} \mathrm{tests} \mathrm{and} \mathrm{for}$ the driving schedule B tests. Similar comparisons have been made for other speeds and cycles in reference 7, and the results are essentially the same. The energy economy for the conventional vehicles in kilometers per liter of gasoline (mpg) has been converted to an equivalent heat input in megajoules per kilometer (Btu/mile) by assuming a heating value for the gasoline of 32 megajoules per liter (114 $800 \mathrm{Btu} / \mathrm{gallon}$). The energy consumption for the electric vehicles was determined from track tests conducted at test conditions identical to those used in the conventional vehicle tests. These results were reported as the electric energy required to recharge the batteries divided by the distance traveled, in units of megajoules per kilometer (kWh/mile).

The quantity of heat required to produce this electrical energy was calculated by assuming that thermal energy from a fuel such as petroleum could be converted to electrical energy at the wall outlet at 33 percent efficiency. These values are tabulated in the last column in table X. Comparing the equivalent heat inputs for the conventional and electric vehicles, under these assumptions, shows that sometimes the electric vehicles require more equivalent energy for propulsion than the conventional vehicles and sometimes less. On the average, the electric vehicles require 6 percent more equivalent energy for propulsion than the conventional vehicles. A similar comparison is made in table XI for energy cost. Assuming that gasoline costs 60 cents per gallon and that electricity costs 5 cents per kilowatt-hour, the costs of propelling the electric and conventional vehicles are comparable.

The acceleration and gradeability of the conventional vehicles were measured and calculated. These values, along with an estimate of the maximum speed for the conventional vehicles, are compared with those of their electric counterparts in table XII. In all cases (acceleration, maximum speed, and gradeability), the electric vehicles performed less well than the conventional vehicles.

APPENDIX A

CONVENTIONAL VEHICLE SUMMARY DATA SHEET - VOLKSWAGEN TRANSPORTER

1.0	Vehicle manufacturer Volkswagen Werk AG
	Wolfsburg, West Germany
2.0	Vehicle Volkswagen Transporter (van)
	-
3.0	Price and availability
	-
4.0	Vehicle weight and load
	4.1 Curb weight, kg (lbm) 1285 (2830)
	4.2 Gross vehicle weight, kg (lbm) 2100 (4630)
	4.3 Cargo weight, kg (lbm)
	4.4 Number of passengers 9
	4.5 Payload, kg (lbm) 815 (1800)
5.0	Vehicle size
	5.1 Wheelbase, m (in.) 2.40 (94.5)
	5.2 Length, m (in.) 4.51 (177.4)
	5.3 Width, m (in.) 1.76 (67.7)
	5.4 Height, m (in.) $1: 96$ (77.0)
	5.5 Head room, m (in.) 0.97 (38)
	5.6 Leg room, m (in.) 1.12 (44)
	5.7 Frontal area, m ${ }^{2}\left(\mathrm{ft}^{2}\right)$
	5.8 Road clearance, cm (in.) 20 (7.8)
	5.9 Number of seats

6.0 Auxiliaries and options

6.1 Lights (number, type, and function) 2 head; 2 park; 2 tail;

2 turn signals (front); 2 backup; 2 interior
6.2 Windshield wipers 2
6.3 Windshield washers yes
6.4 Defroster hot air, front; electric, rear
6.5 Heater heat exchanger with gasoline boost
6.6 Radio AM
6.7 Fuel gage yes
6.8 Amperemeter no
6.9 Tachometer no
6.10 Speedometer yes
6.11 Odometer total plus trip
6.12 Right- or left-hand drive left
6.13 Transmission 4 -speed manual
6.14 Regenerative braking

\qquad
6.15 Mirrors \qquad 1 inside; 2 outside
6.16 Power steering no
6.17 Power brakes no
6.18 Other no air-conditioning
7.0 Engine
7.1 Type air cooled, 4 cylinder, opposed
7.2 Bore, mm (in.) 94 (3.70)
7.3 Stroke, mm (in.) 71 (2.80)
7.4 Displacement, cm^{3} (in. ${ }^{3}$) 1970 (120.2)
7.5 Number of main bearings 3
7.6 Compression ratio 7.3
7.7 Maximum horsepower, kW (hp) $50 \quad$ (67)
7.8 Maximum torque, $\mathrm{N}-\mathrm{m}$ (lbf-ft) 137 (101)
7.9 Fuel regular gasoline
7.10 Materials steel and aluminum
8.0 Capacities
8.1 Engine crankcase, liters (qt) 3.5 (3.7)
8.2 Axle lubricant, liters (qt) 1 (2.12).
8.3 Fuel tank, liters (gal) 59 (15.6)
8.4 Cooling system forced air
9.0 Body
9.1 Manufacturer and type Volkswagen van
9.2 Materials steel9.3 Number of doors and type2 regular; 1 sliding
9.4 Number of windows and type_windshield, rear, 6 side, 2 wing
9.5 Number of seats and type 2 bucket, 2 bench
9.6 Cargo space volume, $\mathrm{m}^{3}\left(\mathrm{ft}^{3}\right) \quad 6.25 \quad(220)$
9.7 Cargo space dimensions, m (in.) $2.95 \times 1.55 \times 1.37 \quad(116 \times 61 \times 54)$
10.0 Chassis
10.1 Frame
10.1.1 Type and manufacturer unitized; Volkswagen Werk AG
10.1.2 Materials steel
10.1.3 Modifications
10.2 Springs and shocks
10.2.1 Type and manufacturer
torsion springs; shocks
10.2.2 Modifications
10.3 Axles
10.3.1 Manufacturer
10.3.2 Front independent; conventional spindle
10.3.3 Rear independent; constant velocity, double joint
10.4 Transmission10.4.1 Type and manufacturer 4-speed, manual transaxle
10.4.2 Gear ratios
10.4.3 Driveline ratio
10.5 Steering
10.5.1 Type and manufacturer
10.5.2 Turning ratio stop to stop
10.5.3 Turning diameter, $\mathrm{m}(\mathrm{ft}) \quad 11.6$ (37 ft , Il in.)
10.6 Brakes

Brakes
10.6.1 Front disk
10.6.2 Rear drum hydraulic, dual circuit, unassisted
10.6.3 Parking
hand, cable, rear wheels
10.6.4 Regenerative
no
10.7 Tires
10.7.1 Manufacturer and type Dunlop radial, load range C
10.7.2 Size 185-14
10.7.3 Pressure, kPa (psi):

Front $\quad 207$ (30)
Rear

10.7.4 Rolling radius, $\mathrm{cm}(\mathrm{m}) \quad$.200.7 (79.0) front; 201.3 (79.3) rear
10.7.5 Wheel weight, kg (lbm):

Without drum 21.3 (47.0)
With drum
10.7.6 Wheel track, m (in.):

Front \qquad
Rear \qquad

APPENDIX B

CONVENTIONAL VEHICLE SUMMARY DATA SHEET - RENAULT 5

6.2 Windshield wipers6.3 Windshield washers
front and rear
6.4 Defroster front and rear
6.5 Heater yes
6.6 Radıo yes
6.7 Fuel gage yes
6.8 Amperemeter no
6.9 Tachometer no
6.10 Speedometer yes
6.11 Odometer yes
6.12 Right- or left-hand drive left
6.13 Transmission yes
6.14 Regenerative braking6.15 Mirrors
I inside; 1 outside
6.16 Power steering no
6.17 Power brakes no
6.18 Other no air-conditioning
7.0 Engine
7.1 Type liquid cooled, 4 cylinder, in line
7.2 Bore, mm (in.) 73 (2.87)
7.3 Stroke, mm (in.) 77 (3.03)
7.4 Displacement, cm^{3} (in. ${ }^{3}$) 1289 (78.66)
7.5 Number of main bearings 5
7.6 Compression ratio 8.5
7.7 Maximum horsepower, $\mathrm{kW}(\mathrm{hp}$)7.8 Maximum torque, $\mathrm{N}-\mathrm{m}$ (lbf-ft)
\qquad
7.9 Fuel regular gasoline
7.10 Materials cast iron block and head
8.0 Capacities
8.1 Engine crankcase, liters (qt) $3.2(6.75)$
8.2 Axle lubricant, liters (qt) 1.75 (3.75)
8.3 Fuel tank, liters (gal) 39 (10.3)
8.4 Cooling system$6.4(6.75)$
9.0 Body9.1 Manufacturer and typeR1228 (R5) ; Groupe Renault
9.2 Materials steel
9.3 Number of doors and type9.4 Number of windows and type windshield; rear; 4 side
9.5 Number of seats and type 2 bucket; 1 folding bench
9.6 Carbo space volume, $\mathrm{m}^{3}\left(\mathrm{ft}^{3}\right) \quad 0.25$ (8.75)
9.7 Cargo space dimensions, m (in.) $89 \times 0.65 \times 0.43(35 \times 25.5 \times 17)$
10.0 Chassis
10.1 Frame
10.1.1 Type and manufacturer unitized; Groupe Renault
10.1.2 Materials steel
10.1.3 Modifications
10.2 Springs and shocks
10.2.1 Type and manufacturer torsion (front)
10.2.2 Modifications$2+$
10.3 Axles
10.3.1 Manufacturer
10.3:2 Front

\qquad
joint
10.3.3 Rear independent
10.4 Transmission
10.4.1 Type and manufacturer 4-speed manual
10.4.2 Gear ratios
\qquad
10.4.3 Drıveline ratio
10.5 Steering
10.5.1 Type and manufacturer
\qquad
10.5.2 Turning ratio stop to stop
10.5.3 Turning diameter, m (ft) 9.78 (32 ft, $1 \mathrm{in}$.)
10.6 Brakes
Brakes
10.6.1 Front di.sk $\{$ hydraulic, unassisted
10.6.2 Rear drum
10.6.3 Parking_hand, cable
10.6.4 Regenerative_no no

10.7 Tires

10.7.1 Manufacturer and type_Michelin radial
10.7.2 Size_145SRI3
10.7.3 Pressure, kPa (psi):
Front 186 (27)
Rear 207 (30)
10.7.4 Rolling radius, m (in.) $1.71(67.5)$ front; 1.73 (68) rear
10.7.5 Wheel weight, kg (lbm):
Without drum \qquad
With drum
10.7.6 Wheel track, m (in.):
Front
Rear
\qquad
\qquad

APPENDIX C

CONVENTIONAL VEHICLE SUMMARY DATA SHEET - AMC PACER

6.2 Windshield wipers 2
6.3 Windshield washers yes
6.4 Defroster front and rear
6.5 Heater yes
6.6 Radio6.7 Fuel gage
__yes
6.8 Amperemeter no
6.9 Tachometer no
6.10 Speedometer yes
6.11 Odometer yes
6.12 Right- or left-hand drive left
6.13 Transmission manual
6.14 Regenerative braking
6.15 Mirrors 1 inside; 1 outside
6.16 Power steering yes
6.17 Power brakes yes
6. 18 Other air-conditioning
7.0 Engine
7.1 Type liquid cooled, 6 cylinder, in line
7.2 Bore, mm (in.) 95 (3.75)
7. 3 Stroke, mm (in.) 99 (3.90)
7.4 Displacement, cm^{3} (in. ${ }^{3}$)_ 4235 (258)
7.5 Number of main bearings 7
7.6 Compression ratio 8.0
7.7 Maximum horsepower, kW (hp)
7.8 Maximum torque, $\mathrm{N}-\mathrm{m}$ ($\mathrm{lbf}-\mathrm{ft}$)7.9 Fuel unleaded gasoline
7.10 Materials cast iron block and head
8.0 Capacities
8.1 Engine crankcase, liters (qt) $4.73 \quad(5.0)$
8.2 Axle lubricant, liters (qt) 1.18 (2.5)
8.3 Fuel tank, liters (gal) 62.8 (16.6)
8.4 Cooling system $10 \quad(10.5)$
9.0 Body
9.1 Manufacturer and type American Motors Corp. two-door
hatchback sedan
9.2 Materials steel
9.3 Number of doors and type 2 conventional
9.4 Number of windows and type

 windshield; rear; 4 side;
 2 wing
 9.5 Number of seats and type 2 bucket; 1 folding bench
9.6 Cargo space volume, $\mathrm{m}^{3}\left(\mathrm{ft}^{3}\right)$
9.7 Cargo space dimensions, m (in.)
10.0 Chassis
10.1 Frame
10.1.1 Type and manufacturer unitized; American Motors Corp.
10.1.2 Materials steel.
10.1.3 Modifications
\qquad
10.2 Springs and shocks
10.2.1 Type and manufacturer

```
                                    oleo shocks; coil springs,
```

 front
 10.2.2 Modifications
 10.3 Axles
 10.3.1 Manufacturer
 10.3.2 Front conventional spindle
 10.3.3 Rear rigid differential axle assembly
 10.4 Transmission
 10.4.1 Type and manufacturer 3-speed manual
 10.4.2 Gear ratios
 S___
 10.4.3 Driveline ratio
 10.5 Steering
 10.5.1 Tỳpe and manufacturer
 \qquad
10.5.2 Turning ratio stop to stop
10.5.3 Turning diameter, m (ft)

```
11.3(37.0)
```

10.6 Brakes

10.7 Tires

10.7.1 Manufacturer and type Goodyear radial
10.7.2 Size DR78-14
10.7.3 Pressure, kPa (psi):

Front	220 (32)
Rear	$220(32)$

10.7.4 Rolling radius, m (in.) 1.98 (78) front and rear
10.7.5 Wheel weight, kg (lbm):

Without drum \qquad
With drum
10.7.6 Wheel track, m (in.):

Front \qquad
Rear \qquad

[^0]
APPENDIX D

CONVENTIONAL VEHICLE SUMMARY DATA SHEET - AM GENERAL DJ-5

1.02.0	Vehicle manufacturer__ AM General Corp.
	South Bend, Indiana
	Vehicle AM General DJ-5 (two-door delivery van)
3:0	Price and availability
4.0	Vehicle weight and load
	4.1 Curb weight, $\mathrm{kg}(\mathrm{lbm}) \quad 1179$ (2600)
	4.2 Gross vehicle weight, kg (lbm) 1497 (3300)
	4.3 Cargo weight, kg (lbm)
	4.4 Number of passengers 1
	4.5 Payload, kg (lbm) 317.5 (700)
5.0	Vehicle size
	5.1 Wheelbase, m (in.) 2.10 (82.5)
	5.2 Length, m (in.) 3.35 (132)
	5.3 Width, m (in.) 1.53 (60)
	5.4 Height, m (in.) 1.83 (72)
	5.5 Head room, m (in.) 1.02 (40)
	5.6 Leg room, m (in.) 1.07 (42)
	5.7 Frontal area, m ${ }^{2}\left(\mathrm{ft}^{2}\right)$
	5.8 Road clearance, cm (in.) 17.8 (7)
	5.9 Number of seats

6.0 Auxiliaries and options
6.1 Lıghts (number, type, and function) 2 head; 2 tail; 2 turn signals
6.2 Windshield wipers 2
6.3 Windshield washers yes
6.4 Defroster yes
6.5 Heater yes
6.6 Radio no
6.7 Fuel gage yes
6.8 Amperemeter no
6.9 Tachometer no
6.10 Speedometer yes
6.11 Odometer yes
6.12 Right- or left-hand drive right
6.13 Transmission automatic
6.14 Regenerative braking
6.15 Mirrors 3 outside; 1 inside
6.16 Power steering no
6.17 Power brakes no
6.18 Other no air-conditioning
7.0 Engine
7.1 Type liquid cooled, 6 cylinder, in line
7.2 Bore, mm (in.) 95 (3.75)
7.3 Stroke, mm (in.) 89 (3.50)
7.4 Displacement, cm^{3} (in. ${ }^{3}$) 3801 (232)
7.5 Number of main bearings 7
7.6 Compression ratio 8.0
7.7 Maximum horsepower, kW (hp)7.8 Maximum torque, $\mathrm{N}-\mathrm{m}$ (lbf-ft)

7.9 Fuel _ ; unleaded gasoline
7.10 Materials cast iron
8.0 Capacities
8.1 Engine crankcase, liters (qt) $4.73 \quad(5.0)$
8.2 Axle lubricant, liters (qt) 1.18 (1.25)
8.3 Fuel tank, liters (gal) 41.5 (11)
8.4 Cooling system 10 (10.5)
9.0 Body
9.1 Manufacturer and type AM General Corp. DJ-5 delivery van
9.2 Materials steel
9.3 Number of doors and type 2 sliding side doors; rear hinge
9.4 Number of windows and type windshield; 2 side; rear
9.5 Number of seats and type 1 bucket
9.6 Cargo space volume, $\mathrm{m}^{3}\left(\mathrm{ft}^{3}\right)$9.7 Cargo space dimensions, m (in.)
10.0 Chassis
10.1 Frame
10.1.1 Type and manufacturer unitized; AM General
10.1.2 Materials steel
10.1.3 Modifications
\qquad
10.2 Springs and shocks
10.2.1 Type and manufacturer oleo shocks; leaf springs
10.2.2 Modifications10.3 Axles10.3.1 Manufacturer
\qquad
10.3.2 Front rigid10.3.3 Rear_rigid assembly with differential
10.4 Transmission
10.4.1 Type and manufacturer Warner gear, 3-speed automatic10.4.2 Gear ratiosL___10.4.3 Driveline ratio
10.5 Steering10.5.1 Type and manufacturer
\qquad
10.5.2 Turning ratio stop to stop
10.5.3 Turning diameter, m (ft) $\quad 9.63$ ($31 \mathrm{ft}, 7 \mathrm{in}$)
10.6 Brakes
$\begin{array}{ll}\text { Brakes } & \\ \text { 10.6.1 } & \text { Front }\end{array} \quad$ drum $]$ hydraulic, unassisted
10.6.4 Regenerative no
10.7 Tires
10.7.1 Manufacturer and type_Goodyear radial
10.7.2 Size_CR78-15
10.7.3 Pressure, kPa (psi):

Front $\quad 124$ (18)
Rear 165 (24)
10.7.4 Rolling radius, m (in.) 2.00 (78.7) front and rear
10.7.5 Wheel weight, $\mathrm{kg}(\mathrm{lbm}):$

Without drum \qquad
With drum
10.7.6 Wheel track, m (in.):

Front \qquad
Rear \qquad

APPENDIX E

DESCRIPTION OF VEHICLE TEST TRACK

All the tests were conducted at the Transportation Research Center (TRC) of Ohio (shown in fig. E-l). This facility was built by the state of Ohio and is now operated by a contractor and supported by the state of Ohio. It is located 72 kilometers northwest of Columbus along U.S. route 33 near East Liberty, Ohio.

The test track is a 12-kilometer.(7.5-mile) continuous loop 1.6 kilometers (l mile) wide and 5.6 kilometers (3.5 mile) long. Three concrete lanes 11.0 meters (36 ft) wide in the straightaways and 12.8 meters (42 ft) wide in the curves make up the high-speed test area. The lanes were designed for speeds of 129 , 177 , and 225 kilometers per hour (80,110 , and 140 mph) with zero lateral acceleration in the curves. The 3.0-kilometer- (l.88-mile-) long straightaways are connected to the constant 731 -meter- ($2400-\mathrm{ft}-$) radius curves by a short variable-radius transition section. Adjacent to the inside concrete lane is a 3.66-meter-(12-ft-) wide asphalt berm. This berm is only banked slightly to provide a drainage slope. An additional asphalt lane 3.66 meters (l2 ft) wide is located adjacent to the outside lane on the straightaways. The constant-speed and cycle tests were conducted on the inside asphalt lanes because all these tests were conducted at relatively low speeds. The acceleration and coast-down tests were conducted on the straight outside asphalt lanes because these were more alike than the two inside asphalt lanes and because it was the portion of the track least likely to encounter traffic interference. The track has a constant 0.228 percent north-to-south downslope. The TRC complex also has a 20-hectare (5-acre) vehicle dynamics area, and a 2740-meter- (9000-ft-) long skid pad for the conduct of braking and handling tests.

APPENDIX F

VEHICLE PREPARATION AND TEST PROCEDURE

Vehicle Preparation

When a vehicle was received at the test track, it was checked to assure that it was ready for testing. These checks were recorded on a vehicle preparation check sheet such as the one shown in figure $F-1$. The vehicle was examined for physical damage when it was removed from the transport truck and before it was accepted from the shipper. Before the vehicle was operated, a complete visual check was made of the entire vehicle.

The vehicle was weighed as received (curb weight). Sufficient ballast was added so that the combined weight of the vehicle, driver, navigator, fuel, and instrumentation was equal to the desired test weight. The vehicle test weight for the first series of tests was the curb weight plus the payload weight of the electric vehicle counterpart. In the second series of tests the test weight was the manufacturer's recommended maximum vehicle gross weight.

The wheel alignment was checked, compared, and corrected to the manufacturer's recommended values. The Renault wheels were too small to accommodate the available equipment for verifying camber and caster. Therefore, only toe-in was adjusted on that vehicle. Wheels were checked for brake drag. Tire pressures were adjusted to the values specified for use at the vehicle gross weight.

Test Procedure

Each day, before the start of testing, a run schedule was issued for vehicles to be tested on that particular day. A blank run schedule is shown in figure $\mathrm{F}-2$. The first item on the run schedule calls for completion of the pretest checklist. A copy of the pretest checklist is shown in figure $\mathrm{F}-3$.

Data taken before, during, and after each test are entered on the track data sheet. Sample track data sheets are shown in figure $F-4$. Separate sheets for the schedule B, C, and D runs (fig. F-4(b)) were completed. The data taken included.
(1) Vehicle tire pressures
(2) Fifth-wheel tire pressure
(3) Vehicle test weight total and for front and rear wheels
(4) Weather information
(5) Time at start of test
(6) Time at completion of test
(7) Duration of test, seconds
(8) Fifth-wheel distance count, feet
(9) Odometer reading before and after test
(10) Total fuel flów, cubic centimeters.
(11) Fuel temperature, degrees Celsius

During the cycle tests the following additional data were also taken:
(12) Number of cycles
(13) Distance traveled for each cycle (cumulative), miles
(14) Fuel flow after each cycle (cumulative), cubic centimeters

To prepare for testing, the tire pressures were adjusted to specification. Operation and adjustment settings of the speedometer, the expanded-scale speedometer, the strip-chart zeros and spans, the speed and distance strip-chart traces, and the fuel flow and fuel temperature indications were all verified. The vehicle was then driven to the weight scale. Weight distribution was measured and recorded. The fifth wheel was then lowered and the spring preload adjusted. The instrumentation was turned on, the vehicle was driven to the track, and one lap was completed to warm up the vehicle and instrumentation and to check the vehicle operation.

After the warmup lap the vehicle was stopped. Vehicle, type of test, date, tire pressure, test weight, weather, fuel temperature, odometer reading, and starting time were recorded on the track data sheet. The date, vehicle, test, chart speed, and pen spans were noted on the strip chart. The test lap was then completed.

After the vehicle was stopped again, the track data sheet was completed. This inclıuded recording tire
pressures, weather, odometer reading, completion time, fuel temperature, accumulated fuel flow, accumulated test time, number of cycles, and fifth-wheel digital distance readout.

The procedure following the warmup lap was then repeated for the next test run, and for each succeeding test, until the vehicle was returned to the workroom. Whenever the vehicle was returned to the workroom or deactivated for a significant time between test laps, another lap was driven to warm up the vehicle before the run schedule was resumed.

When the final test of the day was completed and the track data sheet was filled out, post-test operations were commenced per the post-test checklist shown in figure $\mathrm{F}-5$. All instrumentation power was turned off, the instrumentation battery was disconnected, and the fifth wheel was raised. The vehicle was then driven back to the workroom. The specific gravities of the instrument batteries were checked, and the batteries were put on charge at an appropriate charge rate.

The engineer conducting the test completed an engineering data sheet, shown in figure $\mathrm{F}-6$, for each test lap completed. This data sheet provides a brief summary of the significant test information, including the engineer's evaluation of the test and a record of problems, malfunctions, changes to instrumentation, etc., that occurred during the test.

Weather Data

Wind velocity, ambient temperature, and barometric pressure were measured at the beginning and end of each test. The wind anemometer was located about 1.8 meters (6 ft) from ground level near the center of the east straightaway (fig. E-1). The ambient air temperature and barometric pressure were measured in the control tower adjacent to the anemometer, but at a higher elevation. During many test runs the winds were variable and gusty. The wind conditions were displayed on undamped meters, making it virtually impossible to obtain accurate measurements under variable and/or gusty conditions. The ground elevation at the anemometer was 3 meters higher than the track elevation, which meant the wind was measured above the path of the vehicles. Also, the large physical size and high, banked curves of the track frequently resulted in local wind conditions that differed from the recorded values.

The cycle timer was designed to assist the vehicle driver in accurately driving SAE schedules B, C, and D. The required test profile is permanently stored on a programmable read-only memory (PROM), which is the heart of the instrument. This profile is continuously reproduced on one needle of a dual-movement analog meter shown in the figure. The second needle is connected to the output of the fifth wheel, and the driver "matches needles" to accurately drive the required schedule.

One second before each speed transition (e.g., acceleration to cruise or cruise to coast), a signal sounds to forewarn the driver of a change. A longer duration signal sounds after the idle period to emphasize the start of a new cycle. The total number of test cycles driven is stored in a counter and can be displayed at any time with a pushbutton (to conserve power).

1. Sargent, Noel B.; Maslowski, Edward A.; Soltis, Richard F.; and Schuh, Richard M.: Baseline Tests of the C. H. Waterman DAF Electric Passenger Vehıcle. NASA TM-73757, 1977.
2. The Development of the New SAE Motor Vehicle Fuel Economy Measurement Procedures. SAE Paper-750006, 1975.
3. Soltis, Richard F.; McBrien, Edward F.; Maslowski, Edward A.; and Gourash, Francis: Baseline Tests of the Volkswagen Transporter Electric Delivery Van. NASA TM-73766, 1978.
4. Sargent, Noel B.; McBrien, Edward F.; and Slavik, Ralph J.: Baseline Tests of the C. H. Waterman Renault 5 Electric Passenger Vehicle. NASA TM-73759, 1977.
5. Bozek, John M.; Maslowski, Edward A.; and Dustin, Miles O.: Baseline Tests of the EVA Change-of-Pace Coupe Electric Passenger Vehicle. NASA TM-73763, 1977.
6. Dustin, Miles O.; Tryon, Henry B.; and Sargent Noel B.: Baseline Tests of the AM General DJ-5E Electruck Electric Delivery Van. NASA TM-73758, 1977.
7. NASA Lewis Research Center: State-of-the-Art Assessment of Electric and Hybrid Vehicles. NASA TM-73756, 1977.
table i. - results of constant-Sperd and driving schedule tests on volkswagen transporter at test weiget ${ }^{\text {a }}$ OF 2100 KILOGRAMS (4630 lbm)

Test data	Test condition (constant speed, km / h; or driving schedule)	Wind direc tion, deg	Wind veloc$2 t y$, km / h	Air temperature, ${ }^{\circ} \mathrm{C}$	Fuel flow temperature, ${ }^{\circ} \mathrm{C}$	Total fuel ${ }_{\mathrm{cm}^{3}}^{\text {flow }}$	Fuel economy, km/liter	Test distance, km	Remarks
8/14/77	72	200	23	26	29	1139	I0 4	120	--
	72	200	16	29	35	1069	11.0		----------------------
	72	180	16	29	--	1072	11.1		Fuel temperature not recorded
	69	200	13	27	33	1033	115	1	--
	69	160	16	28	34	1101	113	127	-
	56	220	13	2	35	968	12.3	120	--
	56	160	13	28	33	913	129	120	--
8/5/77	56	220	19	29	37	947	129.	124	--
8/4/77	40	200	13	28	35	1013	117	12.0	Thard-gear operation
		180	11	27	33	989	120		Third-gear operation
		180	11	27	-7	842	141		Fourth-gear operation, fuel temperature not recorded
	\dagger	180	13	27	--	816	14,5	\dagger	Fourth-gear operation, fuel temperature not recorded
	D	200	16	28	37	1683	7.87	134	-------пп-r----------
	D	220	16	26	32	1655	800	13.4	----------------------
	c	220	16	29	36	1579	792	12.7	--
8/5/77	c	220	19	29	37	1634	738	122	---------
	c	200	19	32	37	1666	7.30	124	-
8/4/77	B	210	14	30	39	1735	6.87	12.0	--
8/5/77	B	220	19	27	35	1774	6.74	120	------------------7----

Test date	Test condittion (constant speeed, mph, or draving schedule)	Wind directron, deg	Wand velocsty, mph mph	Alr temperature, ${ }^{\circ} \mathrm{F}$	Fuel flow temperature, OF	Total fuel ${ }_{\substack{\text { flow, } \\ \mathbf{n n}^{3}}}$	$\begin{gathered} \text { Fuel } \\ \text { economy, } \\ \mathrm{mpg} \end{gathered}$	Test distance. mıles	Remarks
8/4/77	45	290	8	79	84	695	24,7	75	----------------------
	45	200	10	85	95	652	26.2		----------------------
	45	180	10	85	---	654	26.1		Fuel temperature not recorded
	43	200	8	80	91	630	272	\dagger	-------------------------
	43	180	10	83	93	67.2	26.8	7.9	-
	35	220	8	81	95	591	29.0	75	--
	35	160	8	83	91	557	30.6	75	--
8/5/77	35	220	12	84	99	578	304	7.7	---------------
8/4/77	25	200	8	82	97	61.8	277	75	Third-gear operation
		180	7	81	91	604	28.3		Third-gear operation
		180	7	81	---	51.4	33.3		Fourth-gear operation, fuel temperature not recorded
	\dagger	180	8	81	---	49.8	34.4	\dagger	Fourth-gear operation, fuel temperature not recorded
	D	200	10	83	99	1027	18.5	8.3	-----
	D	220	10	78	90	101. 0	18,8	8.3	---------------------
	c	220	10	85	97	96.4	186	7.9	----------------------
8/5/77	c	220	12	85	99	997	17.4	76	-----------------------
	c	200	12	89	99	101. 7	172	77	----------------------
8/4/77	B	210	9	86	102	205.9	162	7.5	-----------------------
8/5/77	B	220	12	80	95	108.3	15.9	7.5	-----------------------

${ }^{\text {a }}$ Curb weight of conventional vehicle plus electric vehicle payload

TABLE II. - RESULIS OF CONSTANT-SPEED AND DRIVING SCHEDULE TESTS ON RENAULTE 5 AT TESN WEIGHT ${ }^{\text {a }}$
OF 1025 KILOGRAMS (2260 1bs)
(a) SI units

Test date	Test condition (constant speed, km / h, or driving schedule)	$\begin{aligned} & \text { Wind } \\ & \text { direc- } \\ & \text { tion, } \\ & \text { deg } \end{aligned}$	$\begin{gathered} \text { Wand } \\ \text { veloc- } \\ \text { ity } \\ \mathrm{km} / \mathrm{h} \end{gathered}$	$\begin{aligned} & \text { Alr } \\ & \text { temper- } \\ & \text { ature, } \\ & \text { oc } \end{aligned}$	```Fuel flow temper- ature. OC```	Total fuel flow, cm^{3}	Fuel economy, kn/12ter	```Test dis- tance, km```	Remarks
8/1/77	72	290	10	21	25	988	121	12.0	Carburetor malfunction
B/2/77	72	200	8	21	23	670	178		
	72	200	10	27	30	680	173		-
8/1/77	56	290	13	22	25	849	14.0		Carburetor malfunction
8/2/77	56	180	8	22	23	597	199		-----------2----------
	56	21.5	10	26	30	591	20.1		----------------------
8/1/77	40	290	10	22	27	1060	113		Third-gear operation. carburetor malfunction
8/2/77		180	13	23	25	754	158		Th2rd-gear operation
8/5/77		220	19	31	34	8315	141		Third-gear operation
8/2/77	,	200	10	26	30	521	22.7		Fourth-gear operation
	1	200	10	26	30	517	22.9	\dagger	Fourth-gear operation
	D	180	13	23	28	892	142	128	-
	D	180	10	24	28	897	14.4	130	-
	C	220	11	27	30	994	126	127	-
	c	180	10	24	29	1094	109	12.0	-
8/5/77	c	220	24	31	33	1034	117	12.4	
8/1/77	B	310	16	24	29	1232	9.86	12.2	--
8/2/77	B	200	11	24	30	1214	101	124	-

Test date	Test condition (constant speed, mph, or druving schedule)	```wind durec= tion, deg```	$\begin{aligned} & \text { Wind } \\ & \text { veloc- } \\ & \text { lty, } \\ & \text { mph } \end{aligned}$	$\begin{aligned} & \text { Alr } \\ & \text { temper- } \\ & \text { ature, } \\ & \text { OF } \end{aligned}$	Fuel flow temperature. OF	motal fuel flow, $1 n^{3}$	```cecol```	$\begin{aligned} & \text { Test } \\ & \text { dis- } \\ & \text { tance, } \\ & \text { miles } \end{aligned}$	Remarks
8/1/77	45	290	6	70	77	603	286	75	Carburetor malfunction
8/2/77	45	200	5	70	73	40.9	42.1		-
	45	200	6	80	86	415	41.1		---
8/1/77	35	290	7	71	77	51.8	332		Carburetor malfunction
8/2/77	35	180	5	71	73	364	472		--
	35	215	6	79	86	36.1	474		-=
8/1/77	25	290	6	71	81	64.7	267		Third-gear operation, carburetor malfunction
8/2/77		180	8	73	77	460	37.3		Third-gear operation
8/5/77		220	12.	87	93	50.7	334		Thard-gear operation
8/2/77	,	200	6	79	86	31.8	538	1	Fourth-gear operation
	1	200	6	79	86	315	54.2	1	Fourth-gear operation
8/2/77	D	180	8	74	82	544	335	79	--
	D	180	6	75	82	54.7	339	8.1	\cdots
	c	220	7	80	86	607	297	79	-*
	c	180	6	76	84	668	257	75	-
8/5/77	C	220	15	87	91	631	27.6	7.7	-
8/1/77	B	310	10	75	84	75.2	23.1	7.6	-
8/2/77	B	200	7	76	86	74.1	238	77	

${ }^{\text {a }}$ Curb welght of conventional vehicle plus electric vehicle payload

TABIE III. - RESULTS OF CONSTANTLSPEED AND DRIVING SCHEDULE TESTS ON AAC PACER AT TEST WEIGHT ${ }^{\text {a }}$ OF 1787 KILOGRaMS \{3940 1bmy
(a) SI units

Test date	Test condition (constant speed, km / h; or druving schedule)	```H2nd direc- tion, deg```	$\begin{gathered} \text { Wınd } \\ \text { valoc- } \\ \text { ity, } \\ \mathrm{kmo} / \mathrm{h} \end{gathered}$	Air temperature. ${ }^{\circ} \mathrm{C}$	```Fual flow temper- ature, OC```	$\begin{aligned} & \text { Total } \\ & \text { fuel } \\ & \text { flows } \\ & \mathrm{cm}^{3} \end{aligned}$	Euel economy, km/liter	```Test dis- tance, km```	Remarks
7/28/77	82	170	13	28	32	1151	103	120	-
7/29/77	82	180	10	23	26	1166	10.1		
7/28/77	72	180	13	28	31	1086	10.8		-
7/29/77	72	160	10	23	28	1089	10.9		-
7/28/77	56	170	11	28	30	981	12.0		
7/29/77	56	170	10	23	28	979	122		
7/29/77	40	160	11	27	30	979	121		
7/29/77	40	170	10	23	27	1012	118		---
7/28/77	D	160	11	27	30	1570	835	13.4	$=-\infty$
7/29/77	D	180	13	23	28	1553	849	133	--
7/28/77	C	160	11	27	29	2045	609	12.6	Driving error
7/29/77	C	170	13	23	28	1770	690	123	-
8/4/77	C	180	16	29	32	1762	669	120	--
7/28/77	B	160	10	26	29	2887	411	120	Driving error
7/29/77		160	14	23	29	2252	545	12.3	---
8/4/77		160	16	28	30	1983	6.18	12.5	
8/5/77	1	220	19	28	31	1959	6.17	124	

Test date	Test concition (constant speed, mph, or draving schedule)	```Wind direc- tion. deg```	$\begin{aligned} & \text { Wlnd } \\ & \text { veloc- } \\ & \text { rey; } \\ & \text { mph } \end{aligned}$	$\begin{aligned} & \text { Alr } \\ & \text { temper- } \\ & \text { ature, } \\ & O_{F} \end{aligned}$	```Fuel flow temper- ature, OF```	Total fuel flow, in ${ }^{3}$	Fuel economy, mpg	```Test dis- tance, miles```	Remarks
7/28/77	51	170	8	83	90	70.2	243	75	
7/29/77	51	180	6	73	79	71.2	24.1		\cdots
7/28/77	45	180	8	83	88	663	25.7		-n--------------------
7/29/77	45	160	6	73	82	66.5	259		-
7/28/77	35	170	7	82	86	59.9	284		---
7/29/77	35	170	6	74	82	597	288		--
7/28/77	25	160	7	81	86	597	286	1	--
7/29/77	25	170	6	74	83	618	278	T	----
7/28/77	D	160	7	80	86	95.8	196	8.3	\cdots
7/29/77	D	180	8	74	82	94.8	20.0	8.3	-
7/28/77	c	160	7	80	84	1248	143	7.9	Draving error
7/29/77	c	170	8	74	82	1080	163	7.7	-
8/4/77	C	180	10	85	90	107.5	15.8	7.6	--
7/28/77	B	160	6	78	84	176.2	971	7.5	Driving error
7/29/77	I	160	9	74	84	237.4	128	7.6	-
8/4/77		160	10	83	86	1210	14.5	78	-
8/5/77	\dagger	220	12	83	88	119.5	14.7	7.7	

[^1]TABLE IV. - RESULTS OF CONSTANT-SPEED AND DRIVING SCHEDULE TESTS ON AM GENERAL DJ=5 AR TEST WEIGHT ${ }^{\text {a }}$ OF 1500 KILOGRAMS (3305 Ibm)
(a) SI units

Test date	Test condition (constant speed, km/h; or dravang schedule)	Wınd direction, deg	```Wand veloc- ıty, km/h```	Alr temperature, ${ }^{\circ} \mathrm{C}$	```Fuel flow temper- ature, O```	```Total fuel flow, cm```	Fuei economy, km/later	```Test dys- tance, km```
8/4/77	72	210	19	29	34	1418	8.33	12.0
	72	210	16	29		1397	8.44	
	56	210	19	30		1224	9.65.	
	56	210	16	30	1	1239	9.51	
7/27/77	48	90	10	23	29	1177	10.1	
7/28/77	48	110	6	20	24	1149	10.4	
7/27/77	40	90	1.1	23	29	1136	10.5	
7/28/77	40	140	8	22	25	1135	10.5	1
7/27/77	D	70	11	23	28	1791	7.26	13.2
7/28/77	D	140	11	27	32	1776	7.36	13.3
7/27/77	C	40	8	23	29	1694	7.04	120
7/28/77	C	140	10	27	32	1746	6.87	12.2
7/27/77	B	30	6	23	30	1961	609	12.0
7/28/77	B	160	8	25	30	1923	6.05	11.7

(b) U.S. customary units

Test date	Test conditzon (constant speed, mph; or draving schedule)	Wind direc- tion, deg	Wand veloc1ty, mph	```Alr temper- ature, OF```	```Fuel flow temper- ature, OF```	Total Euel Elow, $1 n^{3}$	$\begin{aligned} & \text { Fuel } \\ & \text { economy, } \\ & \text { mpg } \end{aligned}$	```Test dis- tance, miles```
8/4/77	45	210	12	84	93	86.5	19.7	7.5
	45	210	10	85		853	199	
	35	210	12	86		74.7	22.8	
	35	210	10	85	1	756	22.5	
7/27/77	30	90	6	73	84	71.8	24.0	
7/28/77	30	110	4	68	75	70.1	24.7	
7/27/77	25	90	7	73	84	69.3	24.9	
7/28/77	25	140	5	71	77	69.3	24.8	1
7/27/77	D	70	7	74	82	109.3	17.2	8.2
7/28/77	D	140	7	80	88	108.4	174	8.3
7/27/77	C	40	5	74	84	103.4	16.7	7.5
7/28/77	C	140	6	81	90	106.5	16.3	7.6
7/27/77	B	30	4	74	86	119.7	14.4	7.5
7/28/77	B	160	5	76	86	117.3	14.3	7.3

${ }^{\text {a }}$ Curb weight of conventional vehicle plus electric vehicle payload
table V. - results of constant-speed and driving schedule tests on voluswagen transforter at test height ${ }^{\text {a }}$ OF 2300 KILOGRAMS (5090 lbm)
(a) SI units

Test date	Test condition (constant speed, km / h, or driving schedule)	Hind directrion, deg	Wind veloc1ty, kri/h	$\stackrel{\text { Alr }}{\text { temper- }}$ ature, ${ }^{\circ} \mathrm{C}$	Fuel flow temperature. ${ }^{\circ} \mathrm{C}$	rotal fuel $\mathrm{flon}_{\mathrm{cm}^{3}}$	Fuel economy, kn/liter	Test d18km	Remarks
8/9/77	72	180	11	25	36	1157	104	12.0	------------------
8/10/77	72	180	18	23	28	1171	10.2		------------
8/9/77	69	180	11	25	35	1086	111		----------------------
8/10/77	69	220	16	23	29	1138	105		----------------------
	69	220	13	23	29	1108	108	,	----------------------
8/9/77	56	180	11	26	35	1026	118	122	---n------------------
8/10/77	56	240	19	23	29	1035	116	120	-----------------------
8/9/77	40	170	8	25	33	982	122		Fourth-gear operation
8/10/77		290	16	23	29	1031	116		Fourth-gear operation
8/11/77		220	11	22	28	948	126		Fourth-gear operation
8/9/77	,	180	11	26	33	1094	10.9		Third-gear operation
8/10/77	\dagger	270	24	23	30	2135	10.5	1	Thurd-gear operation
8/9/77	D	140	11	24	32	1653	7.88	130	-
8/10/77	D	220	14	25	33	1667	7.67	129	-
8/9/77	c	170	13	24	33	1699	7.25	124	-----------------------
8/10/77	c	220	16	26	34	1676	7.25	122	
8/9/77	B	160	11	24	35	1798	679	12.2	-----------------------
8/10/77	B	220	16	27	34	1832	6.69	12.4	-----------------------

(b) U S customary units

Test date	Test condition (constant speed. mph, or driving schedule)	Wind direction, deg	W2nd velocity, mph	Alf Eemperature, ${ }^{\circ} \mathrm{F}$	Fuel flow temperature, of	Total fuel flo $^{\text {in }^{3}}$ $1 n^{3}$	$\begin{gathered} \text { Fuel } \\ \text { econony, } \\ \text { mpg } \end{gathered}$	Test distance, miles	Remarks
8/9/77	45	180	7	77	97	706	24.4	75	-----m--n--------------
8/10/77	45	220	10	73	82	71.5	240		---------------------.-
8/9/77	43	180	7	77	95	663	260		--------------------------
8/10/77	43	220	10	73	84	694	248		----------------------
	43	220	8	74	84	676	25.4	\dagger	----------------------
8/9/77	35	180	7	78	95	626	279	76	----------------------
8/10/77	35	240	12	74	84	632	272	75	----------------------
8/9/77	25	170	5	77	91	599	287		Fourth-gear operation
8/10/77		290	10	73	84	629	274		Fourth-gear operation
8/11/77		220	7	72	82	579	29.8		Fourth-gear operation
8/9/77		180	7	79	91	668	25.8		Third-gear operation
8/10/77	\dagger	270	15	74	86	693	249	\dagger	Third-gear operation
8/9/77	D	140	7	75	90	1009	185	8.1	-
8/10/77	D	220	9	77	91	1017	181	8.0	-
8/9/77	c	170	8	76	91	1037	171	77	
8/10/77	c	220	10	78	93	102.3	171	76	-----------------------
8/9/77	B	160	7	76	95	1097	$16.0{ }^{-}$	76	--
8/10/77	B	220	10	80	93	1118	157	7.7	-------------------

[^2]TABLE VI. - RESULTS OF CONSTANT-SPEED AND DRIVING SCHEDULE TESTS ON RENAULT 5 AT TEST WETGHT ${ }^{\text {a }}$
OF 1130 KILOGRaMS (2490 1bm)
(a) SI unzts

Test date	Test condition (constant speed, km / h; or driving schedule)	```Wind drrec- tron, deg```	$\begin{aligned} & \text { Wind } \\ & \text { veloc- } \\ & \text { lty, } \\ & \mathrm{km} / \mathrm{h} \end{aligned}$	Air temperature, ${ }^{\circ} \mathrm{C}$	```Fuel flow temper- ature, C```	rotal fuel flow, cm^{3}	Fuel economy, km/liter	```Test d2s- tance. km```	Remarks
8/9/77	72	180	13	26	30	6736	177	120	-----------------------
8/11/77	72	220	11	22	26	6620	181		------------------n---
8/9/77	56	200	13	26	30	6001	199		
8/11/77	56	220	7	23	25	5680	210		
8/12/77	56	40	6	18	21	6192	195		-
8/9/77	40	140	14	27	33	7469	159		Thard-gear operation
8/11/77		220	7	23	26	7536	159		Third-gear operation
8/9/77		150	13	27	30	5360	22.2		Fourth-gear operation
8/11/77		180	13	26	30	5126	232		Fourth-gear operation
8/11/77	1	220	24	23	25	5078	235	1	Fourth-gear operation
8/9/77	D	200	19	23	25	10847	134	14.6	-
8/21/77	D	180	13	27	30	9599	137	13.4	-
8/10/77	C	210	14	24	26	9204	13 '5	12.6	--
8/11/77	C	200	16	27	32	9003	128	11.7	-
8/12/77	c	70	6	19	22	943.0	131	124	-
8/10/77	B	200	18	27	20	12169	9.77	120	-
8/11/77	B	200	16	28	34	1240.3	959	120	

Test date	Test condation (constant speed, mph, or draving schedule)	$\begin{aligned} & \text { Wind } \\ & \text { direc- } \\ & \text { tion, } \\ & \text { deg } \end{aligned}$	```Find veloc- 1ty, mph```	$\begin{aligned} & \text { Alr } \\ & \text { temper- } \\ & \text { ature, } \\ & \text { OF } \end{aligned}$	```Fuel flow termper- ature, OF```	Total fuel flow, in ${ }^{3}$	Euel economy, mpg	```Test dus- tance, mmles```	Remarks
8/9/77	45	180	8	79	86	41.1	417	75	--------------m------*
8/11/77	45	220	7	72	70	40.4	42.6		
8/9/77	35	200	8	79	86	366	46.7		---
8/11/77	35	220	6	73	77	34.7	495		-
8/12/77	35	40	4	64	70	378	459		--n-------------------
8/9/77	25	140	9	80	91	456	37.6		Third-gear operation
8/11/77		220	6	74	79	460	37.4		Third-gear operation
8/9/77		150	8	80	86	327	522		Fourth-gear operation
8/11/77		180	8	79	86	313	54.7		Fourth-gear operation
8/11/77	1	220	6	73	77	310	55.4	1	Fourth-gear operation
8/9/77	D	200	12	73	77	662	315	9.1	-
8/11/77	D	180	8	80	86	586	322	83	-
8/10/77	C	210	9	75	70	562	318	78	\rightarrow
8/11/77	c	200	10	81	90	549	303	73	-
8/12/77	C	70	4	66	72	575	309	77	-
8/10/77	B	200	11	80	- 86	743	230	75	
8/11/77	B	200	10	82	93	75.7	226	75	

[^3]TABLE VII. - RESULTS OF CONSTANT-SPEED AND DRIVING SCHEDULE TESTS ON AMC PACER AT TEST WEIGHTT ${ }^{\text {a }}$ OF 1965 KILOGRAMS (4330 Ibm)

Test date	Test conalition (constant speed, km / h; or drıving schedule)	$\begin{aligned} & \text { Wand } \\ & \text { direc- } \\ & \text { tion, } \\ & \text { deg } \end{aligned}$	$\begin{gathered} \text { Wlnd } \\ \text { veloc- } \\ 1 t y, \\ \mathrm{~km} / \mathrm{h} \end{gathered}$	Aュr temperature, ${ }^{\circ} \mathrm{C}$	Fuel flow temperature. ${ }^{\circ} \mathrm{C}$	Total fuel $\mathrm{flow}_{\text {r }}$ cm^{3}	Fuel economy, km/lıter	```Test d_s- tance, km```
8/16/77	82	210	19	28	32	1269	938	12.0
	82	160	8	23	2627	$\begin{aligned} & 1248 \\ & 1325 \end{aligned}$	9.59	
	82	160	8	23			9.04	
8/12/77	72	20	8	17	21	1174	103	
8/15/77	72	20	3	23	28	1146	10.4	
8/12/77	56	20	8	1.7	21	1063	11.3	
8/15/77	56	160	5	24	28	1052	11.4	
8/12/77	40	30	6	17	21	1103	10.9	
8/16/77	40	200	10	23	28	1127	10.6	
	40	220	21	27	30	1113	10.6	
8/12/77	D	30	6	19	25	1667	7.74	12.9
8/15/77	D	160	5	25	30	1709	7.37	12.7
8/16/77	D	210	--	24	29	1721	7.36	12.7
8/12/77	C	45	5	19	26	1915	6.30	12.0
8/15/77	C	200	5	26	35	1983	6.08	12.0
8/12/77	B	130	8	21	27	2036	6.00	12.2
8/15/77	B	290	5	27	33	2116	5.69	12.4

(b) U S. customary units

Test date	Test condiation (constant speed, mph, or driving schedule)	$\begin{aligned} & \text { Wind } \\ & \text { direc- } \\ & \text { tion, } \\ & \text { deg } \end{aligned}$	```Wand veloc- lty, mph```	```Alr temper- ature, OF```	```Fuel flow temper- ature, OF```	Total fuel flow, $1 n^{3}$	Fuel economy, mpg	```Test dıs- tance, males```
8/16/77	51	210	12	80	88	77.4	22.1	7.5
8/16/77	51	160	5	73	79	76.2	22.5	
8/16/77	51	160	5	73	81	80.9	21.3	
8/12/77	45	20	5	63	70	71.6	24.2	
8/15/77	45	120	2	74	82	69.8	246	
8/12/77	35	20	5	63	70	64.9	26.8	
8/15/77	35	160	3	75	82	642	26.7	
8/12/77	25	30	4	63	70	673	25.8	
8/16/77	25	200	6	74	82	688	250	
	25	220	13	81	86	679	25.1	1
8/12/77	D	30	4	66	77	101.7	18.2	8.0
8/15/77	D	160	3	77	86	104.3	17.3	7.9
8/16/77	D	210	7	76	84	105.0	17.3	7.9
8/12/77	C	45	3	67	79	1169	14.8	7.5
8/15.77	C	200	3	79	95	121.0	144	7.5
8/12/77	B	130	5	70	80	124.2	14.1	7.6
8/15/77	B	290	3	80	91	129.1	13.6	7.7

[^4]TABLE VIII. - ACCELERATION AND GRADEABILITY CHARACTERISTICS OF FOUR CONVENTIONAL VEHICLES
(a) Volkswagen Transporter \quad (b) Renault 5

Vehrcle speed		Trme to reach desagnated vehicle speed, s	Acceleration		Gradeabllıty, percent
km/h	mph		$\mathrm{m} / \mathrm{s}^{2}$	$\mathrm{mph} / \mathrm{s}$	
0	0	0	0	0	0
2.0	1.2	. 4	2.03	4.09	19.I
4.0	2.5	. 6	200	4.47	20.9
6.0	3.7	. 9	2.06	461	21.6
8.0	5.0	1.2	218	4.88	23.0
10.0	6.2	1.4	2.20	491	23.1
120	7.5	17	229	5.12	24.1
14.0	87	19	215	481	22,6
16.0	99	2.2	204	457	21.4
180	11.2	2.5	193	431	201
20.0	12.4	2.8	201	449	21.0
22.0	137	3.0	2.09	4.68	21.0
240	149	33	1.89	4.22	197
26.0	16.2	36	1.15	258	11.9
280	17.4	4.7	. 70	1.56	7.2
300	187	53	1.06	2.37	10.9
32.0	19.9	5.8	131	294	13.6
34.0	21.1	62	128	. 286	13.2
36.0	22.4	6.7	128	2.86	13.2
38.0	23.6	71	136	3.03	140
40.0	24.9	7.5	133	-2.96	13.7
42.0	26.1	7.9	1.32	2.95	137
44.0	27.4	8.3	125	280	130
46.0	28.6	88	127	285	13.2
48.0	29.8	9.2	84	1.82	8.6
50.0	311	109	46	103	47
52.0	32.3	119	. 69	1.53	7.0
54.0	33.6	126	74	1.65	7.6
56.0	34.8	13.4	. 73	1.62	7.5
580	36.1	14.1	. 74	1.65	7.6
60.0	37.3	149	. 70	1.56	7.2
62.0	38.5	15.7	. 71	1.60	7.3
64.0	39.8	164	. 78	1.74	8.0
66.0	41.0	17.1	. 76	1.60	7.8
68.0	42.3	179	. 72	1.61	7.4
70.0	43.5	187	. 69	1.55	7.1
72.0	448	195	. 63	1.40	6.4
74.0	46.9	20.5	. 61	1.35	6.2
76.0	47.2	21.4	48	1.08	4.9
780	48.5	23.0	30	67	3.1
80.0	49.7	252	. 28	63	2.9
82.0	51.0	27.0	. 34	77	3.5
84.0	52.2	28.5	- 35	78	3.6
86.0	53.5	30.0	- 32	. 71	3.2
88.0	54.7	320	- 32	. 72	3.3
90.0	55.9	33.7	. 33	. 74	$3 \cdot 4$
92.0	572	35.4	. 31	70	3.2
94.0	58.4	37.3	32	. 73	7.3

Vehzcle speed		```Tume to reach desugnated vehzcle speed', S```	Acceleration		Gradeabllity, percent
km/h	mph		$\mathrm{m} / \mathrm{s}^{2}$	$\mathrm{mph} / \mathrm{s}$	
0	0	0	0	0	0
2.0	1.2	. 4	2.46	5.49	26.0
4.0	2.5	. 5	3.46	7.74	37.9
6.0	3.7	. 7	371	8.30	41.1
8.0	5.0	. 8	3.89	8.69	43.4
10.0	6.2	1.0	3.34	7.47	36.5
12.0	75	1.2	2.79	6.23	298
14.0	87	1.4	2.89	6.46	31.0
16.0	9.9	1.5	2.90	6.48	31.1
18.0	11.2	1.7	267	5.97	28.5
20.0	124	2.0	2.57	5.75	27.3
22.0	13.7	2.2	2.77	6.20	29.6
24.0	14.9	2.4	289	6.47	310
26.0	16.2	2.6	2.86	6.40	307
280	17.4	2.8	2.89	6.47	31.1
30.0	18.7.	2.9	274	6.13	293
32.0	19.9	3.2	2.51	5.62	266
34.0	21.1	3.4	2.49	5.58	264
360	22.4	3.6	2.42	5.38	25.4
38.0	23.6	3.9	2.26	5.04	288
40.0	24.9	4.1	2.27	5.09	24.0
42.0	26.1	4.3	2.09	4.68	21.9
440	27.4	$4+6$	1.60	3.57	16.6
46.0	28.6	51	1.55	3.47	161
- 48.0	298	5.4	1.86	4.15	19.4
50.0	31.1	5.7	1.78	3.99	18.6
52.0	323	60	1.64	3.67	171
54.0	336	63	1.80	402	187
56.0	34.8	6.6	1.67	3.73	274
58.0	36.1	7.0	1.46	3.26	15.1
60.0	37.3	74	1.49	3.34	15.5
62.0	38.5	78	1.42	3.17	14.7
64.0	39.8	8.2	1.33	2.97	13.7
66.0	410	86	1.34	2.99	13.9
68.0	423	9.0	1.34	3.00	13.9
70.0	435	94	1.29	2.89	13.4
72.0	44.8	9.9	1.20	2.69	12.4
74.0	46.0	104	. 94	2.09	9.7
76.0	47.2	11.1	. 84	1.87	8.6
780	48.5	117	-92	207	9.5
800	49.7	12.3	-94	2.10	9.7 9
820	51.0	129	-90	201	93
84.0	52.2	136	. 92	2.05	9.4
860	53.5	141	. 95	212	9.8
880	547	14.8	. 86	1. 92	8.8
900	55.9	15.4	. 82	183	8.4
92.0	57.2	16.1	. 80	1.78	8.2
940	58.4	16.8	. 73	1.63	7.5

(c) AMC Pacer

Vehzcle speed		Trme to reach descgnated vehıcle speed, 5	Acceleration		Gradeabllıty, percent
km/h	mph		$\mathrm{m} / \mathrm{s}^{2}$	$\mathrm{mph} / \mathrm{s}$	
0	0	0	0	0	0
2.0	1.2	. 4	1.68	3.76	17.5
40	2.5	. 7	2.07	4.63	21.7
6.0	3.7	. 9	2.20	4.91	231
8.0	5.0	1.2	2.19	4.90	231
10.0	6.2	1.4	2.36	5.28	24.9
12.0	75	1.7	2.79	624	29.8
14.0	8.7	1.8	2.52	5.64	26.8
16.0	9.9	21	2.02	4.53	21.2
18.0	112	2.4	236	528	24.9
200	12.4	2.6	2.39	534	25.2
22.0	13.7	29	225	5.04	23.7
24.0	149	31	2.42	5.4I	25.6
26.0	162	3.3	2.32	5.20	245
28.0	17.4	3.6	2.20	4.92	23.1
30.0	18.7	38	215	4.80	22.5
32.0	19.9	4.1	2.19	4.91	23.1
34.0	21.2	4.3	2.49	5.56	26.4
36.0	22.4	45	2.44	5.45	25.8
38.0	23.6	4.8	2.26	505	23.8
40.0	24.9	50	2.25	5.03	23.7
42.0	26.1	5.3	242	5.42	257
44.0	27.4	5.6	230	5.14	242
46.0	28.6	5.8	203	454	213
48.0	29.8	6.0	2.04	456	21.4
50.0	31.1	6.3	1.97	4.41	206
52.0	32.3	6.6	165	369	17.2
540	33.6	7.0	1.19	266	123
56.0	348	7.6	1.13	2.54	11.7
58.0	361	8.0	1.43	3.20	14.8
600	37.3	8.4	1.52	3.40	15.8
62.0	385	87	143	3.20	14.8
64.0	398	9.1	1.36	3.04	14.1
66.0	410	9.6	1.34	3.00	13.9
68.0	42.3	10.0	140	3.13	14.5
70.0	43.5	104	1.46	328	15.2
72.0	44.8	107	1.38	3.09	14.3
74.0	46.0	11.2	1.28	2.87	13.3
76.0	47.2	11.6	1.28	2.87	13.3
78.0	48.5	12.0	1.23	2.76	127
80.0	49.7	12.5	1.33	2. 98	138
82.0	51.0	12.9	1.33	2.98	13.8
840	52.2	13.3	133	2.98	13.8
86.0	53.5	13.7	1.26	2.83	13.1
88.0	547	14.2	1.01	2.26	10.4
90.0	55.9	148	. 83	1.86	8.5
92.0	57.2	15.6	. 63	1.42	6.5
94.0	58.4	166	. 60	1.33	6.1
960	59.7	17.5	. 65	1.45	6.6

Vehicle speed		```Tume to reach designated vehicle speed, S```	Acceleration		Gradeabılıty, percent
km/h	mph		$\mathrm{m} / \mathrm{s}^{2}$	$\mathrm{mph} / \mathrm{s}$	
0	0	0	0	0	0
2.0	1.2	. 5	1.95	4.35	20.3
4.0	2.5	. 7	3.27	732	35.6
6.0	3.7	. 9	4.17	9.32	47.2
8.0	5.0	1.0	4.29	9.61	49.0
10.0	6.2	1.1	3.77	8.44	41.9
12.0	75	13	3.28	7. 34	35.7
140	87	15	3.36	752	36.7
16.0	99	1.6	3.23	7.22	35.1
180	11.2	1.8	3.30	7.38	35.9
20.0	12.4	2.0	3.49	7.81	38.3
22.0	13.7	2.2	3.24	7.25	35.2
24.0	14.9	23	290	6.50	31.2
26.0	16.2	2.5	2,28	5.11.	24.1
28.0	17.4	2.8	2.31	517	24.4
30.0	18.7	3.0	2.56	5.73	27.2
320	19.9	3.2	2.51	561	26.6
340	21.1	3.5	2.43	5.44	25.7
36.0	224	37	2.19	4.90	23.0
38.0	23.6	4.0	1.89	4.22	19.7
40.0	24.9	4.3	1.79	4.01	18.7
42.0	26.1	4.6	1.84	4.11	19.2
44.0	27.4	4.9	1.67	3.73	17.3
46.0	286	5.3	$\begin{array}{ll}1 & 47\end{array}$	3.29	15.3
48.0	298	57	159	3.57	16.6
50.0	311	6.0	1. 48	3.32	15.4
52.0	32.3	6.4	1.46	326	15.1
540	336	6.8	1.46	3.26	15.1
56.0	34.8	7.2	1.37	3.07	14.2
580	361	76	140	3.13	145
600	373	8.0	1.37	3.06	14.2
620	38.5	8.4	1.32	2.96	13.7
64.0	39.8	8.8	1.16	2.60	12.0
66.0	41.0	94	. 94	211	97
68.0	42.3	10.0	. 97	2.17	10.0
70.0	43.5	10.5	1.02	2.29	10.5
72.0	44.8	11.1	. 89	1.99	9.2
74.0	46.0	11.8	. 86	1.92	8.8
76.0	472	12.4	. 82	1.83	8.4
78.0	485	13.2	. 82	1.88	8.4
80.0	49.7	13.8	. 86	1.92	8.8
32.0	51.0	14.5	. 71	1.59	7.3
34.0	52.2	15.4	. 69	1.53	7.0
86.0	53.5	16.1	74	1.66	7.6
88.0	547	16.8	. 68	1.52	7.0
90.0	55.9	17.8	. 66	1.47	6.7
92.0	572	18.6	62	1.39	6.4
94.0	58.4	19.6	. 55	1.23 1	5.6 6.0
960	59.7	20.6	. 58	1.30	6.0

table IX - ROAD ENERGY CONSUMPTION AND ROAD POWER REQUTREMENTS OF FOUR CONVENTIONAL VEHICLES
(a) Volkswagen Transporter
(b) Renault 5

Vehrcle speed		Tame,	Road energy consumed		Road power required	
km/h	mph		MJ/km	kWh/mxle	kW	hp
96.0	59.7	0	0	0	0	0
94.0	58.4	1.4	. 905	. 405	23.64	31.70
92.0	572	2.6	. 906	405	23.14	3103
90.0	55.9	4.0	. 834	373	20.84	2795
88.0	54.7	5.4	. 803	359	19.62	26.31
86.0	535	6.9	. 767	343	1832	24.57
84.0	52.2	8.4	. 733	. 328	17.10	22.93
82.0	51.0	10.1	. 761	. 340	17.32	23.22
80.0	49.8	11.5	. 786	. 351	17.46	23.42
78.0	48.5	13.1	. 680	304	14.73	19.75
76.0	47.2	15.0	661	. 295	13.95	1870
74.0	46.0	16.7	. 621	278	1276	1711
72.0	44.7	188	. 662	296	13.23	17.74
70.0	43.5	20.3	668	299	12.98	17.41
68.0	42.3	22.5	. 564	. 261	1103	14.79.
66.0	41.0	24.3	. 607	. 271	11.12	1491
640	39.8	263	.573	256	1018	13.65
62.0	38.5	28.4	. 529	237	911	1222
60.0	37.3	30.7	. 555	248	925	12.40
580	36.0	32.7	. 542	242	8.73	11.70
56.0	34.8	35.1	. 503	. 225	7.82	10.48
54.0	33.6	373	. 523	. 234	7.85 -	10.52
52.0	32.3	396	. 497	. 222	7.18	9.63
50.0	31.1	42.0	. 473	. 212	657	8.81
48.0	29.8	44.5	. 448	200	5.97	8.01
46.0	28.6	47.3	. 420	188	536	7.19
44.0	27.3	50.1	. 445	. 199	544	7.29
42.0	26.1	52.5	. 430	. 192	5.02	6.73
40.0	24.9	55.6	. 413	. 184	4.58	6.14
38.0	23.6	58.2	407	. 182	430	5.76
36.0	22.4	513	. 371	166	371	4.98
34.0	21.1	64.5	. 339	. 152	3.20	4.30
320	19.9	58.3	. 338	. 151	3.01	4.03
30.0	186	71.5	. 347	. 155	2.89	3.88
28.0	17.4	75.0	329	147	2.56	343
26.0	162	78.6	331	. 148	2.39	3.20
24.0	149	82.1	. 311	. 139	207	2.78
22.0	13.7	86.1	277	. 124	1.69	2.27
20.0	12.4	90.5	. 288	. 129	1.60	214
18.0	11.2	94.3	287	. 128	1.44	1.92
16.0	9.9	98.7	. 248	. 111	1.10	1.48
14.0	8.7	103.7	. 246	. 110	. 96	1.28
12.0	7.5	108.2	. 267	. 119	. 89	1.19
10.0	6.2	1125	. 253	. 113	. 70	94
80	5.0	117.5	. 234	. 105	52	70
6.0	3.7	122.5	. 236	. 106	. 39	. 53
4.0	25	1274	. 243	109	. 27	. 36
2.0	1.2	132.1	. 210	094	. 12	. 16

Vehicle speed		Tame,s	Road energy consumed		Road power required	
km / h	mph					
			$\mathrm{MJ} / \mathrm{km}$	kWh/mile	kW	hp .
96.0	597	0	0	0	0	0
94.0	58.4	1.1	512	229	13.37	1792
92.0	57.2	2.2	. 505	. 226	12.91	17.31
90.0	55.9	3.3	. 449	. 201	11.22	15.04
88.0	54.7	47	397	. 178	9.71	13.02
86.0	53.4	6.1	. 391	. 175	9.33	1251
84.0	522	7.6	399	. 178	9.30	12.47
82.0	51.0	8.0	. 385	.172	8.76	1175
80.0	497	10.5	. 354	. 158	7.86	10.54
78.0	48.5	12.1	. 353	. 158	7.65	10.26
76.0	47.2	13.7	343	. 153	724	9.71
74.0	46.0	15.4	+ 367	164	755	10.12
72.0	44.7	16.8	354	158	7.07	9.48
70.0	43.5	18.6	316	141	614	8.23
680	42.3	20.3	. 324	. 145	6.11	8.19
660	41.0	22.0	. 310	. 139	568	7.62
64.0	39.8	23.9	. 314	148	5.58	7.48
62.0	38.5	25.6	. 313	. 140	5.38	7.22
60.0	37.3	27.5	. 274	. 122	4.56	6.12
580	36.0	29.7	. 252	. 112	4.05	5.43
56.0	34.8	32.0	. 250	112	3.88	5.21
54.0	336	34.2	. 247	. 110	3.70	4.96
52.0	32.3	36.5	. 240	108	347	4.66
50.0	31.1	38.9	. 242	. 108	3.36	4.50
48.0	29.8	412	. 230	.103	3.06	4.10
46.0	28.6	43.8	. 227	. 102	2.90	389
440	27.3	46.1	. 223	100	2.73	3.66
42.0	26.1	48.8	. 205	. 091	2.39	3.20
400	24.9	51.6	. 211	. 095	2.35	3.15
38.0	23.6	54.1	. 202	. 090	213	2.85
36.0	22.4	57.2	175	. 078	1.75	2.35
34.0	211	60.5	. 183	. 082	1.72	2.31
32.0	199	634	185	. 083	1.65	2.21
300	186	666	. 173	. 078	1.44	1.94
28.0	17.4	698	167	. 075	1.30	1.74
26.0	16.2	73.3	165	. 074	119	1.60
24.0	14.9	76.6	. 161	. 072	1.07	1.44
22.0	13.7	80.2	155	. 070	. 95	1.27
20.0	12.4	83.8	151	. 067	. 84	1.12
18.0	11.2	87.7	. 144	. 064	. 72	97
160	9.9	91.6	. 136	. 061	. 61	. 81
14.0	8.7	95.9	. 128	. 057	. 50	. 67
120	7.5	100.4	. 126	. 056	. 42	. 56
10.0	62	104.8	. 134	. 060	. 37	. 50
8.0	5.0	1087	. 125	. 056	28	. 37
6.0	3.7	113.9	114	. 051	. 19	. 25
4.0	25	118.6	110	. 049	. 12	. 16
2.0	12	124.1	. 118	. 053	. 07	. 09

TABLE IX. - Concluded.
(c) AMC Pacer

Vehzcle speed		$\begin{gathered} \text { Time, } \\ s \end{gathered}$	Road energy consumed		Road power requared	
km/h	mph					
			$\mathrm{MJ} / \mathrm{km}$	$\mathrm{kWh} / \mathrm{mzle}$	kW	hp
96.0	59.7	0	0	0	0	0
94.0	58.4	1.6	. 697	. 311	18.19	24.39
92.0	57.2	2.9	. 675	. 302	17.23	23.11
90.0	55.9	4.6	. 635	. 284	15.87	21.29
88.0	54.7	6.1	. 650	. 291	15.89	21.31
86.0	53.4	7.7	. 589	. 264	14.08	18.88
84.0	52.2	9.4	. 578	. 258	13.47	18.07
82.0	51.0	11.1	. 587	. 262	13.36	17.92
80.0	49.7	12.8	. 578	. 258	12.84	17.22
78.0	48.5	14.5	.553	. 247	11.98	16.06
76.0	47.2	164	.526	. 235	11.11	1490
74.0	46.0	184	. 512	. 229	10.52	14.11
72.0	44.7	20.3	. 505	226	10.09	13.53
70.0	43.5	22.3	. 496	222	9.64	12.93
68.0	42.3	24.4	. 479	214	9.04	12.12
66.0	41.0	26.5	. 454	. 203	8.31	11.15
64.0	39.8	28.8	. 432	. 193	7.37	10.29
62.0	38.5	31.1	444	. 198	7.64	10.24
60.0	37.3	33.3	. 439	. 196	7.32	9.81
58.0	36.0	35.7	.416	186	6.69	8.98
56.0	34.8	38.0	. 416	. 186	6.47	8.67
54.0	33.6	40.4	397	. 177	595	7.98
52.0	32,3	43.1	. 370	. 165	5.34	7.16
50.0	31.1	45.8	. 377	. 169	5.24	7.03
48.0	29.8	48.4	. 386	. 172	5.14	6.89
46.0	28.6	51.0	. 358	. 160	4.58	6.14
44.0	27.3	54.0	. 344	. 154	4.20	5.63
42.0	26.1	56.8	. 335	. 150	3.91	5.25
40.0	24.9	59.9	. 341	. 152	3.78	5.08
38.0	23.6	62.7	. 327	146	3.45	4.62
36.0	22.4	66.1	. 292	131	2.92	3.91
34.0	21.1	69.5	. 296	132	2.79	3.74
32.0	19.9	72.8	. 289	. 129	257	3.44
30.0	18.6	76.5	. 272	. 121	2.26	3.03
28.0	17.4	80.2	. 265	. 118	2.06	2.76
26.0	16.2	839	. 259	. 116	1.87	2.50
24.0	14.9	87.9	. 251	. 112	1.67	2.24
22.0	13.7	91.9	. 251	. 112	1.53	2.06
20.0	12.4	95.8	. 255	. 114	1.42	190
18.0	11.2	99.7	. 241	. 108	1.21	1.62
16.0	9.9	104.1	. 226	. 101	1.00	1.35
14.0	8.7	108.5	. 215	. 096	. 83	1.12
12.0	7.5	113.4	. 214	. 096	. 71	-96
10.0	6.2	117.9	. 211	. 094	. $5 \overline{9}$. 78
8.0	5.0	122.9	. 206	. 092	. 46	. 62
6.0	3.7	127.6	. 201	. 090	. 33	45
4.0	2.5	132.9	.181	. 081	. 20	.27
2.0	1.2	138.6	. 179	. 080	10	.13

(d) AM General $\mathrm{DI}-5$

Vehicle speed		$\underset{\mathbf{S}}{\mathrm{Time},}$	Road energy consumed		Road power required	
km/h	mph					
			$\mathrm{MS} / \mathrm{km}$	kWh/mile	kW	hp
98.0	60.9	0	0	0	0	0
96.0	59.7	. 7	1075	. 480	28.65	38.42
94.0	58.4	1.6	. 985	. 440	25.71	34.47
920	57.2	2.4	. 915	. 409	23.37	31.33
90.0	55.9	3.5	. 827	. 370	20.66	27.71
88.0	54.7	4.4	. 871	. 389	21.28	28.54
86.0	53.4	5.4	. 803	. 359	19.18	25.72
84.0	52.2	6.5	. 770	. 344	17.97	24.10
82.0	51.0	7.6	. 745	. 333	16.96	2274
80.0	49.7	8.7	. 718	. 321	I5.98	21.39
78.0	48.5	99	. 722	. 323	15.64	20.98
76.0	47.2	110	705	. 315	14.88	19.95
74.0	46.0	12.2	634	. 283	13.03	17.47
72.0	44.7	13.7	. 530	. 282	12.60	16.90
70.0	43.5	14.9	. 711	. 318	13.82	18.54
68.0	42.3	16.0	. 679	. 303	12.82	17.19
66.0	41.0	17.4	. 585	. 262	10.72	14.38
640	39.8	18.9	. 570	255	10.14	13.59
62.0	38.5	20.3	568	. 254	9.77	13.10
60.0	37.3	21.8	525	. 235	8.74	11.72
58.0	36.0	23.5	. 472	. 211	7.60	10.19
56.0	34.8	25.3	. 436	. 195	6.78	910
54.0	33.6	27.3	. 444	. 198	6.65	8.92
52.0	32.3	29.1	. 460	. 206	6.65	8.91
50.0	31.1	309	. 425	. 190	5.90	7.92
48.0	29.8	33.0	. 400	. 179	5.33	7.14
46.0	28.6	35.1	. 390	. 174	4.98	6.68
44.0	27.3	37.3	. 375	. 168	458	6.15
42.0	26.1	39.5	. 362	. 162	4.22	5.66
40.0	24.9	41.9	. 335	. 150	3.72	4.99
38.0	23.6	44.5	. 323	. 145	3.41	4.58
36.0	224	47.0	. 321	. 144	3.21	4.30
34.0	21.1	49.7	. 312	. 140	2.95	3.96
32.0	19.9	52.4	. 304	. 136	2.70	3.62
30.0	18.6	55.2	. 290	. 130	2.41	3.24
28.0	17.4	58.1	- 262	. 117	2.04	2.74
26.0	16.2	61.5	244	. 109	1.76	2.36
24.0	14.9	65.0	. 241	. 108	1.60	2.15
22.0	13.7	68.5	- 232	. 104	1.42	1.90
20.0	12.4	72.1	. 226	. 101	1.26	1.69
18.0	11.2	75.8	. 216	. 097	1.08	1.45
16.0	9.9	79.8	. 204	. 091	. 91	1.22
14: 0	8.7	84.0	. 205	-091	. 80	1.07
12.0	7.5	88.0	. 195	. 087	. 65	. 87
10.0	6.2	92.5	. 187	. 094	. 52	. 70
8.0	5.0	96.9	. 191	. 086	. 43	. 57
6.0	3.7	101.2	. 182	. 081	. 30	. 41
4.0	2.5	106.0	. 167	. 075	. 19	. 25
2.0	1.2	111.2	. 175	. 078	.10	.13

table x. - energy usage of conventional and electric vehicles

Vehacle	Test conditıon ${ }^{\text {a }}$	Conventional vehıcle ${ }^{\text {b }}$		Electric vehzcle	
		Average energy consumption			
		Energy economy, km/liter	Equivalent heat input, $\mathrm{MJ} / \mathrm{km}$	Energy consumption (100 percent efficiency), MJ/km	Equivalent heat input (33 percent efficiency), $\mathrm{MJ} / \mathrm{km}$
Volkswagen Transporter	Constant speed Driving schedule	$\begin{gathered} 143 \\ 6.80 \end{gathered}$	2.26 4.71	1.07 1.83	3.18 5.56
Renault 5	Constant speed Driving schedule	$\begin{aligned} & 22.8 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 1.40 \\ & 3.21 \end{aligned}$	51 .74	$\begin{array}{r} 1.55 \\ \hline 2.19 \end{array}$
AMC Pacer	Constant speed Draving schedule	$\begin{array}{r} 11 \\ 6.17 \end{array}$	$\begin{aligned} & 2.67 \\ & 5.15 \end{aligned}$	$\begin{aligned} & 1.12 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.38 \\ & 4.77 \end{aligned}$
AM General ${ }^{\text {dJ-5 }}$	Constant speed Driving schedule	$\begin{gathered} 10.5 \\ 6.07 \end{gathered}$	$\begin{aligned} & 3.04 \\ & 5.27 \end{aligned}$	$\begin{aligned} & 1.16 \\ & 1.72 \end{aligned}$	$\begin{aligned} & 3.57 \\ & 5.17 \end{aligned}$

$\stackrel{\leftrightarrow}{\sqrt{2}}$
(b) U.S. customary units

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{Vehıcle} \& \multirow[t]{5}{*}{Test condition ${ }^{\text {a }}$} \& \multicolumn{3}{|c|}{Conventional vehicle ${ }^{\text {b }}$} \& \multicolumn{3}{|c|}{Electrac vehıcle}

\hline \& \& \multicolumn{6}{|c|}{Average energy consumption}

\hline \& \& \multirow[t]{3}{*}{Energy economy, mpg} \& \multicolumn{2}{|r|}{Equivalent heat input} \& \multirow[t]{3}{*}{Energy consumption (100 percent efficiency), kWh/mile} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Equivalent heat input (33 percent efficiency)}}

\hline \& \& \& \multirow[t]{2}{*}{kWh/mıle} \& \multirow[t]{2}{*}{Btu/male} \& \& \&

\hline \& \& \& \& \& \& kWh/male \& Btu/mile

\hline Volkswagen Transporter \& Constant speed Driving schedule \& $$
\begin{aligned}
& 33.3 \\
& 16.0
\end{aligned}
$$ \& 1.01
2.10 \& 3450
7180 \& 048

82 \& 1.42

2.49 \& $$
\begin{aligned}
& 4850 \\
& 8480
\end{aligned}
$$

\hline Renault 5 \& Constant speed Driving schedule \& $$
\begin{aligned}
& 54.0 \\
& 23.5
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
.62 \\
. .43
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 2130 \\
& 4890
\end{aligned}
$$
\] \& .23

.33 \& .69

.98 \& $$
\begin{aligned}
& 2360 \\
& 3330
\end{aligned}
$$

\hline AMC Pacer \& Constant speed Driving schedule \& $$
\begin{aligned}
& 28.2 \\
& 14.6
\end{aligned}
$$ \& 1.19

2.30 \& 4070
7860 \& 50
.71 \& 1.51

2.13 \& $$
\begin{aligned}
& 5150 \\
& 7270
\end{aligned}
$$

\hline AM General DJ-5 \& Constant speed Driving schedule \& $$
\begin{aligned}
& 24.8 \\
& 14.3
\end{aligned}
$$ \& 1.36

2.35 \& $$
\begin{aligned}
& 4630 \\
& 8030
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& .52 \\
& .77
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.60 \\
& 2.31
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5450 \\
& 7880
\end{aligned}
$$
\]

\hline
\end{tabular}

Constant speed $=40 \mathrm{~km} / \mathrm{h}(25 \mathrm{mph})$, drlving schedule B.
${ }^{\mathrm{b}}$ Energy consumption for conventional vehicles based on lower heating value of gasoline, $32 \mathrm{MJ} /$ Iltex (114 800 Btu/gal).

TABLE XI. - AVERAGE ENERGY COST FOR CONVENTIONAL AND ELECTRIC VEHICLES

Vehicle	Test condition ${ }^{\text {a }}$	Conventional vehıcle		Electric vehicle	
		Average energy cost ${ }^{\text {b }}$			
		¢ $/ \mathrm{km}$	c/mile	¢/km	\%/mile
Volkswagen Transporter	Constant speed Driving schedule	$\begin{aligned} & I .1 \\ & 2.4 \end{aligned}$	1.8 3.7	$\begin{aligned} & 1.5 \\ & 2.6 \end{aligned}$	2.4 4.1
Renault 5	Constant speed Driving schedule	.7 1.6	1.1	.7 1.1	1.2 1.7
AMC Pacer	Constant speed Driving schedule	2.3	2.1	1.6 2.2	$\begin{aligned} & 2.5 \\ & 3.6 \end{aligned}$
AM General DJ-5	Constant speed Driving schedule	1.5 2.6	2.4 4.2	1.6 2.4	$\begin{aligned} & 2.6 \\ & 3.9 \end{aligned}$
```aconstant speed = 40 km/h (25 mph); drıving schedule B. b}\mathrm{ Energy cost based on 5%/kWh for electrucity and l6%/luter (60%/gal) for gasoline.```					

table xit. - track performance data for conventional and electric vehicles

Vehicle	Conventional vehicle	Electric   vehicle	Conventional vehicle		Electric vehicle		Conventional vehicle	Electric vehicle
	Trme to accelerate from 0 to $48 \mathrm{~km} / \mathrm{h}$ (0 to 30 mph ). s		Maximum speed				Gradeability (maximum grade at $40 \mathrm{~km} / \mathrm{h}(25 \mathrm{mph})$ ), parcent	
			km/h	mph	km/h	mph		
Volkswagen Transporter	9	14	>100	$>60$	70	43	13	7
Renault 5	6	20	>125	$>80$	56	35	23	3
AMC Pacer	6	17	> 125	$>80$	82	51	23	6
AM Ganaral DJ-5	6	23	>100	> 60	48	30	18	4



Figure 1. - Volkswagen Transporter.


Figure 2. - Renault 5.


Figure 3. - AMC Pacer.


Figure 4. - AM General DJ-5.


Figure 5. - Typical installation of fifth-wheel on test vehicle.


Figure 6. - Instrumentation installed in test vehicle.


IEST PARAMETER	SAE SCHEDULES		
	B	C	D
MAX. SPEED, V, mph	20	30	45
ACCEL. TME, $\mathrm{t}_{\mathrm{a}}, \mathrm{s}$	19	18	28
CRUISE TIME, ${ }_{\text {cr }}$	19	20	50
COAST TIME, $\mathrm{t}_{\text {co }}$	4	8	10
BRAKE TIME, $\mathrm{t}_{\mathrm{b}}$	5	9	9
IDLE TME, $\mathrm{t}_{\mathrm{i}}$	25	\%	2

Figure 7. - SAE JZ27a driving cycle schedules. OF POOR QUALIIT


(a) Volkswagen Transporter, August 4, 1977
(1) Renault 5, August 12, 1977
$\stackrel{G}{\omega}$



Figure 8 - Vehicle acceleration for four conventional vehicles





Figure 9. - Acceleration as a function of speed for four conventional vehicles.


Figure 10. - Gradeability as a function of speed for four conventional vehicles

(a) Volkswagen Transporter; August 4, 1977.

56

(0) Renault 5; August 12, 1977

(d) AM General DJ-5; July 28. 1977.
(c) AMC Pacer, July 29, 1977.

Figure 11. - Road energy as a function of speed for four conventional vehicles.

(a) Volkswagen Transporter; August 4, 1977.
$G$

(1) Renault 5; August 12, 1977

(d) AM General DJ-5.
(c) AMC Pacer, July 29, 1977

Figure 12. - Road power as a function of speed for four conventional vehicles.


Figure E-1 - Character ıstics of Transportation Research Center Test Track, East Liberty, Ohıo.

1. Vehicle
2. Date received
3. Checked for damage - date
4 Wheel alignment - date
5 Battery checked and equalized - date
4. Curb weight defermined, Ibm $\qquad$ Date
7 Gross vehicle werght, lbm
5. 300-Ampere test - date
9 Manufacturers recommendations:
Maximum speed, mph
Tire pressures, pss Front $\qquad$ Rear $\qquad$ Driving procedures

Figure F-1 - Vehicle preparation check sheet

## 1 Complete pretest checklist

2. Complete one lap at $\qquad$ mph for warmup immedtately prior to beginning test runs
3. Range tests - one full lap at each vehicle speed, in the order listed
$\qquad$
b 25 mph mph

Chart speed, $1 \mathrm{in} / \mathrm{min}$. Do not begin test run until desired constant range speed is attained Start fuel and distance count. On completion of test lap, put fuel flow and distance measurements on hold prior to decelerating to a stop.
4. Cycle fests - one full lap (minımum) of each cycle, in the order listed
a. Schedule D
b. Schedule C
c. Schedule B

Chart speed, 20 secitn for the first three cycles and the last three cycles The remaining cycles should be run with chart speed at 1 min/in Record fuel flow and distance cumulative readings for each cycle
5 Maximum acceleration (without spinning wheels) to 60 mph and coast down to full stop with transmission in neutral Perform a minimum of two accelerations and coastdowns on each outside track straight section Chart speed at 5 sechin Record fuel flow at end of each acceleration and at end of each coastdown Record distance for one acceleration on each track straightaway and for one coastdown on each track straightaway

## 6 Repeatstep 5 to <br> $\qquad$ <br> Complete posttest checklist

 mphFigure F-2 - Blank run schedule for conventional vehicle tests
I Check 5th-wheel tire pressure and vehicle tire pressure.
2 Take 12-volt batterıes off charge Check water; add water if necessary.
3. Plug in l2-volt power to 5th wheel.

4 Check operatons and settings of 5th wheet.
Start with a full tank of gas.
Light expanded scale and set to test to be performed
Light and zero distance readout.
Set inferface box for strip chart at 10, on, and reset
5 Spin up 5th wheel and check -
Speedometer reading
Distance counter recording
Speed indication on strip chart
Distance indication on strip chart
Speed and timing indication on beeper
6 Reset interface box for strip chart to 1000
7 Plug sirip charts into inverter
8. Switch on inverter.

9 Turn on strip charts and check for inking and paper, see if chart drive is working 10. Turn off strip charts and inverter Unplug 5th wheel from 12-volt source Turn off interface boxes and distance counter readout
11. Set chart scales

Vehicle speed - red	0 V	444 V	$0-50 \mathrm{mph}$
Vehicle distance - blue	0 V	50 V	$1000 \mathrm{ft} / \mathrm{pulse}$
Chart speed	minin.		

Chart speed $\qquad$ minin.
12 Put documents on strip charts: tıme, date, vehicle red and blue units, test to be performed, and chart speed
13 Drive vehicle onto scales (Test weight inciudes driver) Ballast, raise 5th wheel
14 Lower 5 th wheel. Set hub loading ( 5 b above hub weight)
15 Drive vehicle onto track
16 Turn on -
Inverter
Recorders (Document time on chart paper)
Interface box for distance readout (On, reset Check that selector is in " 100 " position.)
interface box for distance recorder (On, reset Check that selector is in "1000's position)
Distance readout. (On, reset, count "on."
Plug 5th wheel into 12 -volt supply
17. Be sure data sheet is properly filled out to this point.
18. Proceed with test

(a) All tests

Number   of   cycles	Cumulative   fuel fliw,   $\mathrm{cm}^{3}$	Cumulative distance   traveled,   miles
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
30		
31		
32		
34		

(b) Driving schedule tests

Figure F-4 - Track data sheets

1. Note time immediately at completion of test Turn off key switch

2 Complete track data sheet Do not turn off instrument power until all test run readings have been documented:

Odometer at stop
5th-wheel counter
Gas flow reading
Weather data
Number of cycles (if applicable) Fuel temperature
3. Turn off distance counter, interface boxes, strip-chart recorders, and inverter. Disconnect 5 th wheel from 12 -volt source.
4 Ralse 5th wheel
5. Check specific gravity on instrument batteries.

6 Put 12-volt instrument batteries on charge

Figure F-5 - Post-test checklist for conventional vehicles.


Figure F-6 - Engineering data sheet.

OFFICIAL BUSINESS
penalty for private use s300 SPECIAL FOURTH-CLASS RATE BOOK

POSTAGE AND FEES PAID NATIONAL AERONAUTICS AND space administration 451


[^0]:    い. $\cdots$ INAL PAGE IS
    OF POOR QUALITX

[^1]:    ${ }^{\text {a }}$ curb weight of conventional vehicle plus electric vehicle payioad.

[^2]:    ${ }^{\text {aplacard-listed gross vehicle weight }}$

[^3]:    ${ }^{a}$ placard-1ısted gross vehicle weaght

[^4]:    ${ }^{\text {a }}$ placard-listed gross vehicle welght.

