256 research outputs found

    Stress and Protists: No life without stress

    Get PDF
    We report a summary of the symposium “Stress and Protists: No life without stress”, which was held in September 2015 on the VII European Congress of Protistology in partnership with the International Society of Protistologists (Seville, Spain). We present an overview on general comments and concepts on cellular stress which can be also applied to any protist. Generally, various environmental stressors may induce similar cell responses in very different protists. Two main topics are reported in this manuscript: (i) metallic nanoparticles as environmental pollutants and stressors for aquatic protists, and (ii) ultraviolet radiation – induced stress and photoprotective strategies in ciliates. Model protists such as Chlamydomonas reinhardtii and Tetrahymena thermophila were used to assess stress caused by nanoparticles while stress caused by ultraviolet radiation was tested with free living planktonic ciliates as well as with the symbiont-bearing model ciliate Paramecium bursaria. For future studies, we suggest more intensive analyses on protist stress responses to specific environmental abiotic and/or biotic stressors at molecular and genetic levels up to ecological consequences and food web dynamics

    Dynamic NanoSIMS ion imaging of unicellular freshwater algae exposed to copper

    Get PDF
    This work demonstrates the capabilities of nanoscale secondary-ion mass spectrometry, using the Cameca NanoSIMS50 ion microprobe, to detect and image the copper-ion distribution in microalgal cells exposed to nanomolar and micromolar copper concentrations. In parallel to 63Cu− secondary-ion maps, images of 12C−, 12C14N−, and 31P− secondary ions were collected and analysed. A correlation of 63Cu− secondary-ion maps with those found for 12C14N− and 31P− demonstrated the possible association of Cu with cell components rich in proteins and phosphorus. The results highlighted the potential of NanoSIMS for intracellular tracking of essential trace elements such as Cu in single cells of the microalga Chlorella kesslerii. Figure 12C14N-, 63Cu- secondary-ion distributions in algal cel

    Distinguishing the effects of Ce nanoparticles from their dissolution products : identification of transcriptomic biomarkers that are specific for ionic Ce in Chlamydomonas reinhardtii

    Full text link
    Cerium (Ce) is a rare earth element that is incorporated in numerous consumer products, either in its cationic form or as engineered nanoparticles (ENPs). Given the propensity of small oxide particles to dissolve, it is unclear whether biological responses induced by ENPs will be due to the nanoparticles themselves or rather due to their dissolution. This study provides the foundation for the development of transcriptomic biomarkers that are specific for ionic Ce in the freshwater alga, Chlamydomonas reinhardtii, exposed either to ionic Ce or to two different types of small Ce ENPs (uncoated, ∌10 nm, or citrate-coated, ∌4 nm). Quantitative reverse transcription PCR was used to analyse mRNA levels of four ionic Ce-specific genes (Cre17g.737300, MMP6, GTR12, and HSP22E) that were previously identified by whole transcriptome analysis in addition to two oxidative stress biomarkers (APX1 and GPX5). Expression was characterized for exposures to 0.03–3 ”M Ce, for 60–360 min and for pH 5.0–8.0. Near-linear concentration–response curves were obtained for the ionic Ce and as a function of exposure time. Some variability in the transcriptomic response was observed as a function of pH, which was attributed to the formation of metastable Ce species in solution. Oxidative stress biomarkers analysed at transcriptomic and cellular levels confirmed that different effects were induced for dissolved Ce in comparison to Ce ENPs. The measured expression levels confirmed that changes in Ce speciation and the dissolution of Ce ENPs greatly influence Ce bioavailability

    A Multimethod Approach for Investigating Algal Toxicity of Platinum Nanoparticles

    Get PDF
    The ecotoxicity of platinum nanoparticles (PtNPs) widely used in for example automotive catalytic converters, is largely unknown. This study employs various characterization techniques and toxicity end points to investigate PtNP toxicity toward the green microalgae Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii. Growth rate inhibition occurred in standard ISO tests (EC50 values of 15–200 mg Pt/L), but also in a double-vial setup, separating cells from PtNPs, thus demonstrating shading as an important artifact for PtNP toxicity. Negligible membrane damage, but substantial oxidative stress was detected at 0.1–80 mg Pt/L in both algal species using flow cytometry. PtNPs caused growth rate inhibition and oxidative stress in P. subcapitata, beyond what was accounted for by dissolved Pt, indicating NP-specific toxicity of PtNPs. Overall, P. subcapitata was found to be more sensitive toward PtNPs and higher body burdens were measured in this species, possibly due to a favored binding of Pt to the polysaccharide-rich cell wall of this algal species. This study highlights the importance of using multimethod approaches in nanoecotoxicological studies to elucidate toxicity mechanisms, influence of NP-interactions with media/organisms, and ultimately to identify artifacts and appropriate end points for NP-ecotoxicity testing

    Predicting Pb bioavailability to freshwater microalgae in the presence of fulvic acid: Algal cell density as a variable

    No full text
    In order to better understand the relationship between lead speciation and its bioavailability in natural waters, the interactions between Pb(II), fulvic acid and the freshwater alga, Chlorella kesslerii were studied at various algal cell densities. An increase in cellular lead or fulvic acid adsorbed to algae was observed with decrease of the cell density from ca. 10(7) to 10(5) cells ml(-1). In the presence of fulvic acid, cellular Pb was greater than that expected for the same free lead ion concentrations in the absence of fulvic acid in agreement to our previous study. This effect was found to be more pronounced at lower cell density, in accordance with increased fulvic acid adsorption to algae. Good fit between experimental observations and model predictions of cellular Pb at various cell densities, was observed by assuming that fulvic acid adsorbed to algae give rise to additional binding sites for Pb(II). The findings of this study indicate that a further extension of the biotic ligand model which includes the formation of a ternary complex and cell density (or concentration) as an input parameter is needed to improve its site-specific predictive capacity, especially in the case of dissolved organic matter-rich surface waters. This extension of predictive capacity would allow to reduce the deviations from the BLM model predictions for microalgae in the presence of dissolved organic matter and hence will serve as a mechanistic tool for establishing ambient site-specific water quality criteria. (C) 2007 Elsevier Ltd. All rights reserved

    Biogeochemical Dynamics Research in the Anthropocene

    No full text
    The present paper provides a perspective on selected key issues driving inquiry in biogeochemical dynamics research of Twenty-first century, which could contribute to filling of knowledge gaps toward development of the systems biogeochemistry approach. The specific focus is on understanding of the multiscale processes and effects involving elements and chemical compounds, their interactions with other environmental variables, as well as the development of integrative quantitative models and their validation. The special attention is paid on the necessity to decipher the biogeochemical dynamics of the novel entities and combinations of inorganic and/or organic chemicals in the environment,as well as their critical linkages and feedbacks with major nutrient cycles, the interplays with climate change and other anthropogenic stressors. Taking advantage of rapidly developing omics approaches and stable isotopes of non-traditional metals as well as the synergies arising from their integration in the biogeochemical modeling are discussed together with their potential to transform biogeochemical studies and push toward new frontiers in biogeochemical dynamics knowledge

    The Chance of a Lifetime: To Learn from the Best

    Get PDF
    The author describes her experience as a Maitre-assistance at the University of Geneva and the significant influence of Jacques Buff le on her development as an environmental chemist
    • 

    corecore