61 research outputs found

    Living with the Past: Nutritional Stress in Juvenile Males Has Immediate Effects on their Plumage Ornaments and on Adult Attractiveness in Zebra Finches

    Get PDF
    The environmental conditions individuals experience during early development are well known to have fundamental effects on a variety of fitness-relevant traits. Although it is evident that the earliest developmental stages have large effects on fitness, other developmental stages, such as the period when secondary sexual characters develop, might also exert a profound effect on fitness components. Here we show experimentally in male zebra finches, Taeniopygia guttata, that nutritional conditions during this later period have immediate effects on male plumage ornaments and on their attractiveness as adults. Males that had received high quality food during the second month of life, a period when secondary sexual characteristics develop, were significantly more attractive as adults in mate choice tests than siblings supplied with standard food during this period. Preferred males that had experienced better nutritional conditions had larger orange cheek patches when nutritional treatments ended than did unpreferred males. Sexual plumage ornaments of young males thus are honest indicators of nutritional conditions during this period. The mate choice tests with adult birds indicate that nutritional conditions during the period of song learning, brain and gonad development, and moult into adult plumage have persisting effects on male attractiveness. This suggests that the developmental period following nutritional dependence from the parents is just as important in affecting adult attractiveness as are much earlier developmental periods. These findings thus contribute to understanding the origin and consequences of environmentally determined fitness components

    Whistle communication in mammal-eating killer whales (Orcinus orca): further evidence for acoustic divergence between ecotypes

    Get PDF
    Public signaling plays an important role in territorial and sexual displays in animals; however, in certain situations, it is advantageous to keep signaling private to prevent eavesdropping by unintended receivers. In the northeastern Pacific, two populations of killer whales (Orcinus orca), fish-eating “resident” killer whales and mammal-eating “transient” killer whales, share the same habitat. Previous studies have shown that residents use whistles as private signals during close-range communication, where they probably serve to coordinate behavioral interactions. Here, we investigated the whistling behavior of mammal-eating killer whales, and, based on divergent social structures and social behaviors between residents and transients, we predicted to find differences in both whistle usage and whistle parameters. Our results show that, like resident killer whales, transients produce both variable and stereotyped whistles. However, clear differences in whistle parameters between ecotypes show that the whistle repertoire of mammal-eating killer whales is clearly distinct from and less complex than that of fish-eating killer whales. Furthermore, mammal-eating killer whales only produce whistles during “milling after kill” and “surface-active” behaviors, but are almost completely silent during all other activities. Nonetheless, whistles of transient killer whales may still serve a role similar to that of resident killer whales. Mammal-eating killer whales seem to be under strong selection to keep their communication private from potential prey (whose hearing ranges overlap with that of killer whales), and they appear to accomplish this mainly by restricting vocal activity rather than by changes in whistle parameters

    Oceanic Sharks Clean at Coastal Seamount

    Get PDF
    Interactions between pelagic thresher sharks (Alopias pelagicus) and cleaner wrasse were investigated at a seamount in the Philippines. Cleaning associations between sharks and teleosts are poorly understood, but the observable interactions seen at this site may explain why these mainly oceanic sharks regularly venture into shallow coastal waters where they are vulnerable to disturbance from human activity. From 1,230 hours of observations recorded by remote video camera between July 2005 and December 2009, 97 cleaner-thresher shark events were analyzed, 19 of which were interrupted. Observations of pelagic thresher sharks interacting with cleaners at the seamount were recorded at all times of day but their frequency declined gradually from morning until evening. Cleaners showed preferences for foraging on specific areas of a thresher shark's body. For all events combined, cleaners were observed to conduct 2,757 inspections, of which 33.9% took place on the shark's pelvis, 23.3% on the pectoral fins, 22.3% on the caudal fin, 8.6% on the body, 8.3% on the head, 2.1% on the dorsal fin, and 1.5% on the gills respectively. Cleaners did not preferentially inspect thresher sharks by time of day or by shark sex, but there was a direct correlation between the amount of time a thresher shark spent at a cleaning station and the number of inspections it received. Thresher shark clients modified their behavior by “circular-stance-swimming,” presumably to facilitate cleaner inspections. The cleaner-thresher shark association reflected some of the known behavioral trends in the cleaner-reef teleost system since cleaners appeared to forage selectively on shark clients. Evidence is mounting that in addition to acting as social refuges and foraging grounds for large visiting marine predators, seamounts may also support pelagic ecology by functioning as cleaning stations for oceanic sharks and rays

    A Diverse and Flexible Teaching Toolkit Facilitates the Human Capacity for Cumulative Culture

    Get PDF
    © 2017, The Author(s). Human culture is uniquely complex compared to other species. This complexity stems from the accumulation of culture over time through high- and low-fidelity transmission and innovation. One possible reason for why humans retain and create culture, is our ability to modulate teaching strategies in order to foster learning and innovation. We argue that teaching is more diverse, flexible, and complex in humans than in other species. This particular characteristic of human teaching rather than teaching itself is one of the reasons for human’s incredible capacity for cumulative culture. That is, humans unlike other species can signal to learners whether the information they are teaching can or cannot be modified. As a result teaching in humans can be used to support high or low fidelity transmission, innovation, and ultimately, cumulative culture

    Effects of the social environment during adolescence on the development of social behaviour, hormones and morphology in male zebra finches (Taeniopygia guttata)

    Get PDF
    Abstract Background Individual differences in behaviour are widespread in the animal kingdom and often influenced by the size or composition of the social group during early development. In many vertebrates the effects of social interactions early in life on adult behaviour are mediated by changes in maturation and physiology. Specifically, increases in androgens and glucocorticoids in response to social stimulation seem to play a prominent role in shaping behaviour during development. In addition to the prenatal and early postnatal phase, adolescence has more recently been identified as an important period during which adult behaviour and physiology are shaped by the social environment, which so far has been studied mostly in mammals. We raised zebra finches ( Taeniopygia guttata ) under three environmental conditions differing in social complexity during adolescence\ua0-\ua0juvenile pairs, juvenile groups, and mixed-age groups - and studied males\u2019 behavioural, endocrine, and morphological maturation, and later their adult behaviour. Results As expected, group-housed males exhibited higher frequencies of social interactions. Group housing also enhanced song during adolescence, plumage development, and the frequency and intensity of adult courtship and aggression. Some traits, however, were affected more in juvenile groups and others in mixed-age groups. Furthermore, a testosterone peak during late adolescence was suppressed in groups with adults. In contrast, corticosterone concentrations did not differ between rearing environments. Unexpectedly, adult courtship in a test situation was lowest in pair-reared males and aggression depended upon the treatment of the opponent with highest rates shown by group-reared males towards pair-reared males. This contrasts with previous findings, possibly due to differences in photoperiod and the acoustic environment. Conclusion Our results support the idea that effects of the adolescent social environment on adult behaviour in vertebrates are mediated by changes in social interactions affecting behavioural and morphological maturation. We found no evidence that long-lasting differences in behaviour reflect testosterone or corticosterone levels during adolescence, although differences between juvenile and mixed-age groups suggest that testosterone and song behaviour during late adolescence may be associated

    Microsatellite Support for Active Inbreeding in a Cichlid Fish

    Get PDF
    In wild animal populations, the degree of inbreeding differs between species and within species between populations. Because mating with kin often results in inbreeding depression, observed inbreeding is usually regarded to be caused by limited outbreeding opportunities due to demographic factors like small population size or population substructuring. However, theory predicts inclusive benefits from mating with kin, and thus part of the observed variation in inbreeding might be due to active inbreeding preferences. Although some recent studies indeed report kin mating preferences, the evidence is still highly ambiguous. Here, we investigate inbreeding in a natural population of the West African cichlid fish Pelvicachromis taeniatus which showed clear kin mating preferences in standardized laboratory experiments but no inbreeding depression. The presented microsatellite analysis reveals that the natural population has, in comparison to two reference populations, a reduced allelic diversity (A = 3) resulting in a low heterozygosity (Ho = 0.167) pointing to a highly inbred population. Furthermore, we found a significant heterozygote deficit not only at population (Fis = 0.116) but also at subpopulation level (Fis = 0.081) suggesting that inbreeding is not only a by-product of population substructuring but possibly a consequence of behavioral kin preferences

    Risks and benefits of lethal male fighting in the colonial, polygynous thrips Hoplothrips karnyi (Insecta: Thysanoptera)

    Full text link
    Males of Hoplothrips karnyi (Hood) (Insecta: Thysanoptera), a colonial fungus-feeding thrips, fight each other in defense of communal egg mass sites, where they mate with females that come to oviposit. Fighting males stab each other with their enlarged, armed forelegs and hit each other with their abdomens. Escalated fights occur between large males of similar size. Fights are often lethal; males that died during observations fought more frequently than other males, were stabbed more often and more severely than other males, and were relatively large, but somewhat smaller than their opponents. Large males tend to win fights and guard egg masses, and they secure about 80% of last matings before ovipositions. Guarding males apparently assess female reproductive condition by putting their forelegs partially around females' abdomens; guarding males, but not nonguarding males, mate preferentially with females that have yet to oviposit. Non-guarding males mate with females away from egg masses, sneak matings at egg masses, and occasionally challenge guarding males. Challenges tend to follow matings by non-guarding males at egg masses. Each of four observed or inferred takeovers was followed by the death of the guarding male that lost. Male fighting strategies are discussed in terms of the consistency of lethal fighting with game theory models. Guardin males appear to pursue a classical “hawk” strategy of “escalate until injured or victorious”. This strategy may be advantageous because only large males become guarders, the mating success of guarders greatly exceeds that of non-guarders, and high population viscosity ensures that benefits from killing an opponent accrue directly to gaurders. The occurrence of challenges by large non-guarders implies that fighting ability and resource value asymmetries between males change over time; such changes may result from the energetic costs of guarding, injury to guarding males, or depletion of guarding males' supply of sperm.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46885/1/265_2004_Article_BF00299845.pd

    La nueva ley de instituciones bancarias, financieras y de seguros: algunos comentarios 

    Get PDF
    This research was funded by Natural Sciences and Engineering Research Council of Canada discovery grants to LL and L-AG. NJB was financially supported by a Dr. Richard H. Tomlinson Fellowship and a Dr. Milton Leong Fellowship from McGill University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Background: Successful foraging is essential for survival and reproductive success. In many bird species, foraging is a learned behaviour. To cope with environmental change and survive periods in which regular foods are scarce, the ability to solve novel foraging problems by learning new foraging techniques can be crucial. Although females have been shown to prefer more efficient foragers, the effect of males' foraging techniques on female mate choice has never been studied. We tested whether females would prefer males showing the same learned foraging technique as they had been exposed to as juveniles, or whether females would prefer males that showed a complementary foraging technique. Methodology/Principal Findings: We first trained juvenile male and female zebra finches (Taeniopygia guttata) to obtain a significant proportion of their food by one of two foraging techniques. We then tested whether females showed a preference for males with the same or the alternative technique. We found that neither a male's foraging technique nor his foraging performance affected the time females spent in his proximity in the mate-choice apparatus. We then released flocks of these finches into an aviary to investigate whether assortative pairing would be facilitated by birds taught the same technique exploiting the same habitat. Zebra finches trained as juveniles in a specific foraging technique maintained their foraging specialisation in the aviary as adults. However, pair formation and nest location were random with regard to foraging technique. Conclusions/Significance: Our findings show that zebra finches can be successfully trained to be foraging specialists. However, the robust negative results of the conditions tested here suggest that learned foraging specializations do not affect mate choice or pair formation in our experimental context.Publisher PDFPeer reviewe
    corecore