11,989 research outputs found

    The responses of people to virtual humans in an immersive virtual environment

    Get PDF
    This paper presents an experiment investigating the impact of behavior and responsiveness on social responses to virtual humans in an immersive virtual environment (IVE). A number of responses are investigated, including presence, copresence, and two physiological responses—heart rate and electrodermal activity (EDA). Our findings suggest that increasing agents’ responsiveness even on a simple level can have a significant impact on certain aspects of people’s social responses to humanoid agents. Despite being aware that the agents were computer-generated, participants with higher levels of social anxiety were significantly more likely to avoid “disturbing” them. This suggests that on some level people can respond to virtual humans as social actors even in the absence of complex interaction. Responses appear to be shaped both by the agents’ behaviors and by people’s expectations of the technology. Participants experienced a significantly higher sense of personal contact when the agents were visually responsive to them, as opposed to static or simply moving. However, this effect diminished with experienced computer users. Our preliminary analysis of objective heart-rate data reveals an identical pattern of responses

    Embodiment in a virtual body that speaks produces agency over the speaking but does not necessarily influence subsequent real speaking

    Get PDF
    Previous results have shown that body ownership, induced through first-person perspective (1PP) over a virtual body (VB) that moves synchronously with real body movements, can lead to illusory agency over VB utterances even though the participant does not speak. It was also found that when participants later speak they follow the fundamental frequency (FF) of the voice of their VB, indicating a new motor plan for speaking. To eliminate the contribution of veridical agency over the VB movements, we conducted a study where we induced body ownership using visuotactile (VT) synchrony rather than visuomotor. Participants saw a life-sized VB from 1PP and reflected in a virtual mirror, that spoke with corresponding lip movements. Half of the 36 experimental participants experienced synchronous (Sync) passive VT on their hands and abdomen, and the other half asynchronous (Async). We found that both VT Sync and Async conditions resulted in a strong subjective illusion of body ownership and agency over the VB, but not, however, changes in voice FF in subsequent speaking. This shows that although illusory agency may be associated with body ownership, a change in motor plan is likely to be a generalisation from veridical agency over whole body movements

    Discrimination of growth and water stress in wheat by various vegetation indices through a clear a turbid atmosphere

    Get PDF
    Reflectance data were obtained over a drought-stressed and a well-watered wheat plot with a hand-held radiometer having bands similar to the MSS bands of the LANDSAT satellites. Data for 48 clear days were interpolated to yield reflectance values for each day of the growing season, from planting until harvest. With an atmospheric path radiance model and LANDSAT-2 calibration data, the reflectance were used to simulate LANDSAT digital counts (not quantized) for the four LANDSAT bands for each day of the growing season, through a clear (approximately 100 km meteorological range) and a turbid (approximately 10 km meteorological range) atmosphere. Several ratios and linear combinations of bands were calculated using the simulated data, then assessed for their relative ability to discriminate vegetative growth and plant stress through the two atmospheres. The results show that water stress was not detected by any of the indices until after growth was retarded, and the sensitivity of the various indices to vegetation depended on plant growth stage and atmospheric path radiance

    A priori probability that a qubit-qutrit pair is separable

    Full text link
    We extend to arbitrarily coupled pairs of qubits (two-state quantum systems) and qutrits (three-state quantum systems) our earlier study (quant-ph/0207181), which was concerned with the simplest instance of entangled quantum systems, pairs of qubits. As in that analysis -- again on the basis of numerical (quasi-Monte Carlo) integration results, but now in a still higher-dimensional space (35-d vs. 15-d) -- we examine a conjecture that the Bures/SD (statistical distinguishability) probability that arbitrarily paired qubits and qutrits are separable (unentangled) has a simple exact value, u/(v Pi^3)= >.00124706, where u = 2^20 3^3 5 7 and v = 19 23 29 31 37 41 43 (the product of consecutive primes). This is considerably less than the conjectured value of the Bures/SD probability, 8/(11 Pi^2) = 0736881, in the qubit-qubit case. Both of these conjectures, in turn, rely upon ones to the effect that the SD volumes of separable states assume certain remarkable forms, involving "primorial" numbers. We also estimate the SD area of the boundary of separable qubit-qutrit states, and provide preliminary calculations of the Bures/SD probability of separability in the general qubit-qubit-qubit and qutrit-qutrit cases.Comment: 9 pages, 3 figures, 2 tables, LaTeX, we utilize recent exact computations of Sommers and Zyczkowski (quant-ph/0304041) of "the Bures volume of mixed quantum states" to refine our conjecture

    High-Temperature Expansions of Bures and Fisher Information Priors

    Full text link
    For certain infinite and finite-dimensional thermal systems, we obtain --- incorporating quantum-theoretic considerations into Bayesian thermostatistical investigations of Lavenda --- high-temperature expansions of priors over inverse temperature beta induced by volume elements ("quantum Jeffreys' priors) of Bures metrics. Similarly to Lavenda's results based on volume elements (Jeffreys' priors) of (classical) Fisher information metrics, we find that in the limit beta -> 0, the quantum-theoretic priors either conform to Jeffreys' rule for variables over [0,infinity], by being proportional to 1/beta, or to the Bayes-Laplace principle of insufficient reason, by being constant. Whether a system adheres to one rule or to the other appears to depend upon its number of degrees of freedom.Comment: Six pages, LaTeX. The title has been shortened (and then further modified), at the suggestion of a colleague. Other minor change

    From presence to consciousness through virtual reality

    Get PDF
    Immersive virtual environments can break the deep, everyday connection between where our senses tell us we are and where we are actually located and whom we are with. The concept of 'presence' refers to the phenomenon of behaving and feeling as if we are in the virtual world created by computer displays. In this article, we argue that presence is worthy of study by neuroscientists, and that it might aid the study of perception and consciousness

    Anomalous resilient to decoherence macroscopic quantum superpositions generated by universally covariant optimal quantum cloning

    Full text link
    We show that the quantum states generated by universal optimal quantum cloning of a single photon represent an universal set of quantum superpositions resilient to decoherence. We adopt Bures distance as a tool to investigate the persistence ofquantum coherence of these quantum states. According to this analysis, the process of universal cloning realizes a class of quantum superpositions that exhibits a covariance property in lossy configuration over the complete set of polarization states in the Bloch sphere.Comment: 8 pages, 6 figure

    Magnetically Focused Proton Irradiation of Small Volume Radiosurgery Targets Using a Triplet of Quadrupole Magnets

    Get PDF
    Proton therapy is an advantageous choice for the irradiation of tumors in proximity of critical structures due to rapid dose fall off and high dose deposition at target compared to dose at the surface of the patient (ie, peak-to-entrance dose ratio (P/E)). However, with target fields below 1.0 cm, as often encountered in proton radiosurgery, multiple Coulomb scattering (MCS) broadens proton beams leading to diminished P/E advantages and reduced dose delivery efficiency (DDE). Magnetic focusing tends to counteract MCS and is a promising method to reduce these undesirable effects. The purpose of this research is to investigate the advantages of proton magnetic focusing with a triplet of quadrupole rare earth permanent magnets
    corecore