We extend to arbitrarily coupled pairs of qubits (two-state quantum systems)
and qutrits (three-state quantum systems) our earlier study (quant-ph/0207181),
which was concerned with the simplest instance of entangled quantum systems,
pairs of qubits. As in that analysis -- again on the basis of numerical
(quasi-Monte Carlo) integration results, but now in a still higher-dimensional
space (35-d vs. 15-d) -- we examine a conjecture that the Bures/SD (statistical
distinguishability) probability that arbitrarily paired qubits and qutrits are
separable (unentangled) has a simple exact value, u/(v Pi^3)= >.00124706, where
u = 2^20 3^3 5 7 and v = 19 23 29 31 37 41 43 (the product of consecutive
primes). This is considerably less than the conjectured value of the Bures/SD
probability, 8/(11 Pi^2) = 0736881, in the qubit-qubit case. Both of these
conjectures, in turn, rely upon ones to the effect that the SD volumes of
separable states assume certain remarkable forms, involving "primorial"
numbers. We also estimate the SD area of the boundary of separable qubit-qutrit
states, and provide preliminary calculations of the Bures/SD probability of
separability in the general qubit-qubit-qubit and qutrit-qutrit cases.Comment: 9 pages, 3 figures, 2 tables, LaTeX, we utilize recent exact
computations of Sommers and Zyczkowski (quant-ph/0304041) of "the Bures
volume of mixed quantum states" to refine our conjecture