249 research outputs found

    Evaluation of game templates to support programming activities in schools

    Get PDF
    Game creation challenges in schools potentially provide engaging, goal-oriented, and interactive experiences in classes; thereby supporting the transfer of knowledge for learning in a fun and pedagogic manner. A key element of the ongoing European project No One Left Behind (NOLB) is to integrate a game-making teaching framework (GMTF) into the educational app Pocket Code. Pocket Code allows learners to create programs in a visual Lego®-style way to facilitate learning how to code at secondary high schools. The concept of the NOLB GMTF is based on principles of the Universal Design for Learning (UDL) model. Its focus lies on three pillars of learning: the what, how, and why. Thereby, the NOLB GMTF is a common set of concepts, practices, pedagogy, and methods. This framework provides a coherent approach to learning and teaching by integrating leisure oriented gaming methods into multi-discipline curricula. One output of this framework is the integration of game-based methods via game templates that refer to didactical scenarios that include a refined set of genres, assets, rules, challenges, and strategies. These templates allows: 1) teachers to start with a well-structured program, and 2) pupils to add content and adjust the code to integrate their own ideas. During the project game genres such as adventure, action, and quiz, as well as rewards or victory point mechanisms, have been embedded into different subjects, e.g., science, mathematics, and arts. The insights gained during the class hours were used to generate 13 game templates, which are integrated in Create@School (a new version of the Pocket Code app which targets schools). To test the efficiency of these templates, user experience (UX) tests were conducted during classes to compare games created by pupils who used templates and those who started to create a game from scratch. Preliminary results showed that these templates allow learners to focus on subject-relevant problem solving activities rather than on understanding the functionality of the app. This directly leads to more time to express their creativity in different levels and more time for extra tasks

    Myeloid transformation by MLL-ENL depends strictly on C/EBP

    Get PDF
    Chromosomal rearrangements of the mixed-lineage leukemia gene MLL1 are the hallmark of infant acute leukemia. The granulocyte-macrophage progenitor state forms the epigenetic basis for myelomonocytic leukemia stemness and transformation by MLL-type oncoproteins. Previously, it was shown that the establishment of murine myelomonocytic MLL-ENL transformation, but not its maintenance, depends on the transcription factor C/EBPα, suggesting an epigenetic hit-and-run mechanism of MLL-driven oncogenesis. Here, we demonstrate that compound deletion of Cebpa/Cebpb almost entirely abrogated the growth and survival of MLL-ENL–transformed cells. Rare, slow-growing, and apoptosis-prone MLL-ENL–transformed escapees were recovered from compound Cebpa/Cebpb deletions. The escapees were uniformly characterized by high expression of the resident Cebpe gene, suggesting inferior functional compensation of C/EBPα/C/EBPβ deficiency by C/EBPε. Complementation was augmented by ectopic C/EBPβ expression and downstream activation of IGF1 that enhanced growth. Cebpe gene inactivation was accomplished only in the presence of complementing C/EBPβ, but not in its absence, confirming the Cebpe dependency of the Cebpa/Cebpb double knockouts. Our data show that MLL-transformed myeloid cells are dependent on C/EBPs during the initiation and maintenance of transformation

    Periapsis and gravitomagnetic precessions of stellar orbits in Kerr and Kerr-de Sitter black hole spacetimes

    Full text link
    The exact solution for the motion of a test particle in a non-spherical polar orbit around a Kerr black hole is derived. Exact novel expressions for frame dragging (Lense-Thirring effect), periapsis advance and the orbital period are produced. The resulting formulae, are expressed in terms of Appell's first hypergeometric function F1F_1, Jacobi's amplitude function, and Appell's F1F_1 and Gau\ss hypergeometric function respectively. The exact expression for frame dragging is applied for the calculation of the Lense-Thirring effect for the orbits of S-stars in the central arcsecond of our Galaxy assuming that the galactic centre is a Kerr black hole, for various values of the Kerr parameter including those supported by recent observations. In addition, we apply our solutions for the calculation of frame dragging and periapsis advance for stellar non-spherical polar orbits in regions of strong gravitational field close to the event horizon of the galactic black hole, e.g. for orbits in the central milliarcsecond of our galaxy. Such orbits are the target of the GRAVITY experiment. We provide examples with orbital periods in the range of 100min - 54 days. Detection of such stellar orbits will allow the possibility of measuring the relativistic effect of periapsis advance with high precision at the strong field realm of general relativity. Further, an exact expression for the orbital period of a test particle in a non-circular equatorial motion around a Kerr black hole is produced. We also derive exact expressions for the periapsis advance and the orbital period for a test particle in a non-circular equatorial motion in the Kerr field in the presence of the cosmological constant in terms of Lauricella's fourth hypergeometric function FDF_D.Comment: LaTeX file, 46 pages, typos fixed, substantial changes, version published in Classical and Quantum Gravity, Vol 24 (2007) 1775-180

    New Insights into the Control of HIV-1 Transcription: When Tat Meets the 7SK snRNP and Super Elongation Complex (SEC)

    Get PDF
    Recent studies aimed at elucidating the mechanism controlling HIV-1 transcription have led to the identification and characterization of two multi-subunit complexes that both contain P-TEFb, a human transcription elongation factor and co-factor for activation of HIV-1 gene expression by the viral Tat protein. The first complex, termed the 7SK snRNP, acts as a reservoir where active P-TEFb can be withdrawn by Tat to stimulate HIV-1 transcription. The second complex, termed the super elongation complex (SEC), represents the form of P-TEFb delivered by Tat to the paused RNA polymerase II at the viral long terminal repeat during Tat transactivation. Besides P-TEFb, SEC also contains other elongation factors/co-activators, and they cooperatively stimulate HIV-1 transcription. Recent data also indicate SEC as a target for the mixed lineage leukemia (MLL) protein to promote the expression of MLL target genes and leukemogenesis. Given their roles in HIV-1/AIDS and cancer, further characterization of 7SK snRNP and SEC will help develop strategies to suppress aberrant transcriptional elongation caused by uncontrolled P-TEFb activation. As both complexes are also important for normal cellular gene expression, studying their structures and functions will elucidate the mechanisms that control metazoan transcriptional elongation in general

    Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases

    Get PDF
    The enzyme tRNA-guanine transglycosylase (TGT) is involved in the queuosine modification of tRNAs in eukarya and eubacteria and in the archaeosine modification of tRNAs in archaea. However, the different classes of TGTs utilize different heterocyclic substrates (and tRNA in the case of archaea). Based on the X-ray structural analyses, an earlier study [Stengl et al. (2005) Mechanism and substrate specificity of tRNA-guanine transglycosylases (TGTs): tRNA-modifying enzymes from the three different kingdoms of life share a common catalytic mechanism. Chembiochem, 6, 1926–1939] has made a compelling case for the divergent evolution of the eubacterial and archaeal TGTs. The X-ray structure of the eukaryal class of TGTs is not known. We performed sequence homology and phylogenetic analyses, and carried out enzyme kinetics studies with the wild-type and mutant TGTs from Escherichia coli and human using various heterocyclic substrates that we synthesized. Observations with the Cys145Val (E. coli) and the corresponding Val161Cys (human) TGTs are consistent with the idea that the Cys145 evolved in eubacterial TGTs to recognize preQ1 but not queuine, whereas the eukaryal equivalent, Val161, evolved for increased recognition of queuine and a concomitantly decreased recognition of preQ1. Both the phylogenetic and kinetic analyses support the conclusion that all TGTs have divergently evolved to specifically recognize their cognate heterocyclic substrates

    MLL leukemia-associated rearrangements in peripheral blood lymphocytes from healthy individuals

    Get PDF
    Chromosomal translocations are characteristic of hematopoietic neoplasias and can lead to unregulated oncogene expression or the fusion of genes to yield novel functions. In recent years, different lymphoma/leukemia-associated rearrangements have been detected in healthy individuals. In this study, we used inverse PCR to screen peripheral lymphocytes from 100 healthy individuals for the presence of MLL (Mixed Lineage Leukemia) translocations. Forty-nine percent of the probands showed MLL rearrangements. Sequence analysis showed that these rearrangements were specific for MLL translocations that corresponded to t(4;11)(q21;q23) (66%) and t(9;11) (20%). However, RT-PCR failed to detect any expression of t(4;11)(q21;q23) in our population. We suggest that 11q23 rearrangements in peripheral lymphocytes from normal individuals may result from exposure to endogenous or exogenous DNA-damaging agents. In practical terms, the high susceptibility of the MLL gene to chemically-induced damage suggests that monitoring the aberrations associated with this gene in peripheral lymphocytes may be a sensitive assay for assessing genomic instability in individuals exposed to genotoxic stress

    Intrinsic Structural Disorder Confers Cellular Viability on Oncogenic Fusion Proteins

    Get PDF
    Chromosomal translocations, which often generate chimeric proteins by fusing segments of two distinct genes, represent the single major genetic aberration leading to cancer. We suggest that the unifying theme of these events is a high level of intrinsic structural disorder, enabling fusion proteins to evade cellular surveillance mechanisms that eliminate misfolded proteins. Predictions in 406 translocation-related human proteins show that they are significantly enriched in disorder (43.3% vs. 20.7% in all human proteins), they have fewer Pfam domains, and their translocation breakpoints tend to avoid domain splitting. The vicinity of the breakpoint is significantly more disordered than the rest of these already highly disordered fusion proteins. In the unlikely event of domain splitting in fusion it usually spares much of the domain or splits at locations where the newly exposed hydrophobic surface area approximates that of an intact domain. The mechanisms of action of fusion proteins suggest that in most cases their structural disorder is also essential to the acquired oncogenic function, enabling the long-range structural communication of remote binding and/or catalytic elements. In this respect, there are three major mechanisms that contribute to generating an oncogenic signal: (i) a phosphorylation site and a tyrosine-kinase domain are fused, and structural disorder of the intervening region enables intramolecular phosphorylation (e.g., BCR-ABL); (ii) a dimerisation domain fuses with a tyrosine kinase domain and disorder enables the two subunits within the homodimer to engage in permanent intermolecular phosphorylations (e.g., TFG-ALK); (iii) the fusion of a DNA-binding element to a transactivator domain results in an aberrant transcription factor that causes severe misregulation of transcription (e.g. EWS-ATF). Our findings also suggest novel strategies of intervention against the ensuing neoplastic transformations

    A secretome profile indicative of oleate-induced proliferation of HepG2 hepatocellular carcinoma cells

    Get PDF
    Increased fatty acid (FA) is often observed in highly proliferative tumors. FAs have been shown to modulate the secretion of proteins from tumor cells, contributing to tumor survival. However, the secreted factors affected by FA have not been systematically explored. Here, we found that treatment of oleate, a monounsaturated omega-9 FA, promoted the proliferation of HepG2 cells. To examine the secreted factors associated with oleate-induced cell proliferation, we performed a comprehensive secretome profiling of oleate-treated and untreated HepG2 cells. A comparison of the secretomes identified 349 differentially secreted proteins (DSPs; 145 upregulated and 192 downregulated) in oleate-treated samples, compared to untreated samples. The functional enrichment and network analyses of the DSPs revealed that the 145 upregulated secreted proteins by oleate treatment were mainly associated with cell proliferation-related processes, such as lipid metabolism, inflammatory response, and ER stress. Based on the network models of the DSPs, we selected six DSPs (MIF, THBS1, PDIA3, APOA1, FASN, and EEF2) that can represent such processes related to cell proliferation. Thus, our results provided a secretome profile indicative of an oleate-induced proliferation of HepG2 cell
    corecore