603 research outputs found
Exciton properties and optical spectra of light harvesting complex II from a fully atomistic description
We present a fully atomistic simulation of linear optical spectra (absorption, fluorescence and circular dichroism) of the Light Harvesting Complex II (LHCII) trimer using a hybrid approach, which couples a quantum chemical description of the chlorophylls with a classical model for the protein and the external environment (membrane and water). The classical model uses a polarizable Molecular Mechanics force field, thus allowing mutual polarization effects in the calculations of the excitonic properties. The investigation is performed both on the crystal structure and on structures generated by a μs long classical molecular dynamics simulation of the complex within a solvated membrane. The results show that this integrated approach not only provides a good description of the excitonic properties and optical spectra without the need for additional refinements of the excitonic parameters, but it also allows an atomistic investigation of the relative importance of electronic, structural and environment effects in determining the optical spectra
Ultra-cold atoms in an optical cavity: two-mode laser locking to the cavity avoiding radiation pressure
The combination of ultra-cold atomic clouds with the light fields of optical
cavities provides a powerful model system for the development of new types of
laser cooling and for studying cooperative phenomena. These experiments
critically depend on the precise tuning of an incident pump laser with respect
to a cavity resonance. Here, we present a simple and reliable experimental
tuning scheme based on a two-mode laser spectrometer. The scheme uses a first
laser for probing higher-order transversal modes of the cavity having an
intensity minimum near the cavity's optical axis, where the atoms are confined
by a magnetic trap. In this way the cavity resonance is observed without
exposing the atoms to unwanted radiation pressure. A second laser, which is
phase-locked to the first one and tuned close to a fundamental cavity mode
drives the coherent atom-field dynamics.Comment: 7 pages, 7 figure
Structure of the stress-related LHCSR1 complex determined by an integrated computational strategy
Light-harvesting complexes (LHCs) are pigment-protein complexes whose main function is to capture sunlight and transfer the energy to reaction centers of photosystems. In response to varying light conditions, LH complexes also play photoregulation and photoprotection roles. In algae and mosses, a sub-family of LHCs, light-harvesting complex stress-related (LHCSR), is responsible for photoprotective quenching. Despite their functional and evolutionary importance, no direct structural information on LHCSRs is available that can explain their unique properties. In this work, we propose a structural model of LHCSR1 from the moss P. patens, obtained through an integrated computational strategy that combines homology modeling, molecular dynamics, and multiscale quantum chemical calculations. The model is validated by reproducing the spectral properties of LHCSR1. Our model reveals the structural specificity of LHCSR1, as compared with the CP29 LH complex, and poses the basis for understanding photoprotective quenching in mosses
Atomic Force Microscopy Study of Nano-Physiological Response of Ladybird Beetles to Photostimuli
Background: Insects are of interest not only as the most numerous and diverse group of animals but also as highly efficient bio-machines varying greatly in size. They are the main human competitors for crop, can transmit various diseases, etc. However, little study of insects with modern nanotechnology tools has been done. Methodology/Principal Findings: Here we applied an atomic force microscopy (AFM) method to study stimulation of ladybird beetles with light. This method allows for measuring of the internal physiological responses of insects by recording surface oscillations in different parts of the insect at sub-nanometer amplitude level and sub-millisecond time. Specifically, we studied the sensitivity of ladybird beetles to light of different wavelengths. We demonstrated previously unknown blindness of ladybird beetles to emerald color (,500nm) light, while being able to see UV-blue and green light. Furthermore, we showed how one could study the speed of the beetle adaptation to repetitive flashing light and its relaxation back to the initial stage. Conclusions: The results show the potential of the method in studying insects. We see this research as a part of what might be a new emerging area of ‘‘nanophysiology’ ’ of insects
Towards surface quantum optics with Bose-Einstein condensates in evanescent waves
We present a surface trap which allows for studying the coherent interaction
of ultracold atoms with evanescent waves. The trap combines a magnetic Joffe
trap with a repulsive evanescent dipole potential. The position of the magnetic
trap can be controlled with high precision which makes it possible to move
ultracold atoms to the surface of a glass prism in a controlled way. The
optical potential of the evanescent wave compensates for the strong attractive
van der Waals forces and generates a potential barrier at only a few hundred
nanometers from the surface. The trap is tested with Rb Bose-Einstein
condensates (BEC), which are stably positioned at distances from the surfaces
below one micrometer
The SCIDOTS Project: Evidence of benefits of an integrated tobacco cessation intervention in tuberculosis care on treatment outcomes
<p>Abstract</p> <p>Background</p> <p>There is substantial evidence to support the association between tuberculosis (TB) and tobacco smoking and that the smoking-related immunological abnormalities in TB are reversible within six weeks of cessation. Therefore, connecting TB and tobacco cessation interventions may produce significant benefits and positively impact TB treatment outcomes. However, no study has extensively documented the evidence of benefits of such integration. SCIDOTS Project is a study from the context of a developing nation aimed to determine this.</p> <p>Methods</p> <p>An integrated TB-tobacco intervention was provided by trained TB directly observed therapy short-course (DOTS) providers at five chest clinics in Malaysia. The study was a prospective non-randomized controlled intervention using quasi-experimental design. Using Transtheoretical Model approach, 120 eligible participants who were current smokers at the time of TB diagnosis were assigned to either of two treatment groups: conventional TB DOTS plus smoking cessation intervention (integrated intervention or SCIDOTS group) or conventional TB DOTS alone (comparison or DOTS group). At baseline, newly diagnosed TB patients considering quitting smoking within the next 30 days were placed in the integrated intervention group, while those who were contemplating quitting were assigned to the comparison group. Eleven sessions of individualized cognitive behavioral therapy with or without nicotine replacement therapy were provided to each participant in the integrated intervention group. The impacts of the novel approach on biochemically validated smoking cessation and TB treatment outcomes were measured periodically as appropriate.</p> <p>Results</p> <p>A linear effect on both 7-day point prevalence abstinence and continuous abstinence was observed over time in the intervention group. At the end of 6 months, patients who received the integrated intervention had significantly higher rate of success in quitting smoking when compared with those who received the conventional TB treatment alone (77.5% vs. 8.7%; p < 0.001). Furthermore, at the end of TB treatment (6 months or later), there were significantly higher rates of treatment default (15.2% vs. 2.5%; p = 0.019) and treatment failure (6.5% vs. 0%; p = 0.019) in the DOTS group than in the SCIDOTS group.</p> <p>Conclusion</p> <p>This study provides evidence that connecting TB-tobacco treatment strategy is significant among TB patients who are smokers. The findings suggest that the integrated approach may be beneficial and confer advantages on short-term outcomes and possibly on future lung health of TB patients who quit smoking. This study may have important implications on health policy and clinical practice related to TB management among tobacco users.</p
Platelet‐Derived Growth Factor (PDGF) Gene Delivery for Application in Periodontal Tissue Engineering
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141045/1/jper0815.pd
Probing quantum phases of ultracold atoms in optical lattices by transmission spectra in cavity QED
Studies of ultracold atoms in optical lattices link various disciplines,
providing a playground where fundamental quantum many-body concepts, formulated
in condensed-matter physics, can be tested in much better controllable atomic
systems, e.g., strongly correlated phases, quantum information processing.
Standard methods to measure quantum properties of Bose-Einstein condensates
(BECs) are based on matter-wave interference between atoms released from traps
which destroys the system. Here we propose a nondestructive method based on
optical measurements, and prove that atomic statistics can be mapped on
transmission spectra of a high-Q cavity. This can be extremely useful for
studying phase transitions between Mott insulator and superfluid states, since
various phases show qualitatively distinct light scattering. Joining the
paradigms of cavity quantum electrodynamics (QED) and ultracold gases will
enable conceptually new investigations of both light and matter at ultimate
quantum levels, which only recently became experimentally possible. Here we
predict effects accessible in such novel setups.Comment: 6 pages, 3 figure
Targeted molecular characterization shows differences between primary and secondary myelofibrosis
INTRODUCTION: In BCR-ABL1-negative myeloproliferative neoplasms, myelofibrosis (MF) is either primary (PMF) or secondary (SMF) to polycythemia vera or essential thrombocythemia. MF is characterized by an increased risk of transformation to acute myeloid leukemia (AML) and a shortened life expectancy.
METHODS: Because natural histories of PMF and SMF are different, we studied by targeted next generation sequencing the differences in the molecular landscape of 86 PMF and 59 SMF and compared their prognosis impact.
RESULTS: PMF had more ASXL1 (47.7%) and SRSF2 (14%) gene mutations than SMF (respectively 27.1% and 3.4%, P = .04). Poorer survival was associated with RNA splicing mutations (especially SRSF2) and TP53 in PMF (P = .0003), and with ASXL1 and TP53 mutations in SMF (P < .0001). These mutations of poor prognosis were associated with biological features of scoring systems (DIPSS and MYSEC-PM score). Mutations in TP53/SRSF2 in PMF or TP53/ASXL1 in SMF were more frequent as the risk of these scores increased. This allowed for a better stratification of MF patients, especially within the DIPSS intermediate-1 risk group (DIPSS) or the MYSEC-PM high risk group. AML transformation occurred faster in SMF than in PMF and patients who transformed to AML were more SRSF2-mutated and less CALR-mutated at MF sampling.
CONCLUSIONS: PMF and SMF have different but not specific molecular profiles and different prognosis depending on the molecular profile. This may be due to differences in disease history. Combining mutations and existing scores should improve prognosis assessment
- …