493 research outputs found

    Polarimetric Calibration of Large-Aperture Telescopes II: The sub-aperture method

    Full text link
    A new method for absolute polarimetric calibration of large telescopes is presented. The proposed method is highly accurate and is based on the calibration of a small sub-aperture, which is then extended to the full system by means of actual observations of an astronomical source. The calibration procedure is described in detail along with numerical simulations that explore its robustness and accuracy. The advantages and disadvantages of this technique with respect to other possible alternatives are discussed.Comment: Journal of the Optical Society of America-A, submitte

    Time Series Analysis of Key Societal Events as Reflected in Complex Social Media Data Streams

    Full text link
    Social media platforms hold valuable insights, yet extracting essential information can be challenging. Traditional top-down approaches often struggle to capture critical signals in rapidly changing events. As global events evolve swiftly, social media narratives, including instances of disinformation, become significant sources of insights. To address the need for an inductive strategy, we explore a niche social media platform GAB and an established messaging service Telegram, to develop methodologies applicable on a broader scale. This study investigates narrative evolution on these platforms using quantitative corpus-based discourse analysis techniques. Our approach is a novel mode to study multiple social media domains to distil key information which may be obscured otherwise, allowing for useful and actionable insights. The paper details the technical and methodological aspects of gathering and preprocessing GAB and Telegram data for a keyness (Log Ratio) metric analysis, identifying crucial nouns and verbs for deeper exploration. Empirically, this approach is applied to a case study of a well defined event that had global impact: the 2023 Wagner mutiny. The main findings are: (1) the time line can be deconstructed to provide useful data features allowing for improved interpretation; (2) a methodology is applied which provides a basis for generalization. The key contribution is an approach, that in some cases, provides the ability to capture the dynamic narrative shifts over time with elevated confidence. The approach can augment near-real-time assessment of key social movements, allowing for informed governance choices. This research is important because it lays out a useful methodology for time series relevant info-culling, which can enable proactive modes for positive social engagement.Comment: AAAI2024 Workshop on AI for Time Series Analysis (AI4TS

    Statistical analysis of the very quiet Sun magnetism

    Full text link
    The behavior of the observed polarization amplitudes with spatial resolution is a strong constraint on the nature and organization of solar magnetic fields below the resolution limit. We study the polarization of the very quiet Sun at different spatial resolutions using ground- and space-based observations. It is shown that 80% of the observed polarization signals do not change with spatial resolution, suggesting that, observationally, the very quiet Sun magnetism remains the same despite the high spatial resolution of space-based observations. Our analysis also reveals a cascade of spatial scales for the magnetic field within the resolution element. It is manifest that the Zeeman effect is sensitive to the microturbulent field usually associated to Hanle diagnostics. This demonstrates that Zeeman and Hanle studies show complementary perspectives of the same magnetism.Comment: Accepted for publication in Ap

    Multi-line Stokes inversion for prominence magnetic-field diagnostics

    Full text link
    We present test results on the simultaneous inversion of the Stokes profiles of the He I lines at 587.6 nm (D_3) and 1083.0 nm in prominences (90-deg scattering). We created datasets of synthetic Stokes profiles for the case of quiescent prominences (B<200 G), assuming a conservative value of 10^-3 of the peak intensity for the polarimetric sensitivity of the simulated observations. In this work, we focus on the error analysis for the inference of the magnetic field vector, under the usual assumption that the prominence can be assimilated to a slab of finite optical thickness with uniform magnetic and thermodynamic properties. We find that the simultaneous inversion of the two lines significantly reduces the errors on the inference of the magnetic field vector, with respect to the case of single-line inversion. These results provide a solid justification for current and future instrumental efforts with multi-line capabilities for the observations of solar prominences and filaments.Comment: 14 pages, 5 figures, 1 tabl

    Polarimetric Calibration of Large-Aperture Telescopes I: The Beam-Expansion Method

    Full text link
    This paper describes a concept for the high-accuracy absolute calibration of the instrumental polarization introduced by the primary mirror of a large-aperture telescope. This procedure requires a small aperture with polarization calibration optics (e.g., mounted on the dome) followed by a lens that opens the beam to illuminate the entire surface of the mirror. The Jones matrix corresponding to this calibration setup (with a diverging incident beam) is related to that of the normal observing setup (with a collimated incident beam) by an approximate correction term. Numerical models of parabolic on-axis and off-axis mirrors with surface imperfections are used to explore its accuracy.Comment: Journal of the Optical Society of America-A, in pres

    Steady dynamos in finite domains: an integral equation approach

    Get PDF
    The paper deals with the integral equation approach to steady kinematic dynamo models in finite domains based on Biot-Savart's law. The role of the electric potential at the boundary is worked out explicitly. As an example, a modified version of the simple spherical α\alpha-effect dynamo model proposed by Krause and Steenbeck is considered in which the α\alpha-coefficient is no longer constant but may vary with the radial coordinate. In particular, the results for the original model are re-derived. Possible applications of this integral equation approach for numerical simulations of dynamos in arbitrary geometry and for an ''inverse dynamo theory'' are sketched.Comment: 18 pages, submitted to Astron. Nach

    Spectral type dependent rotational braking and strong magnetic flux in three components of the late-M multiple system LHS 1070

    Full text link
    We show individual high resolution spectra of components A, B, and C of the nearby late-M type multiple system LHS 1070. Component A is a mid-M star, B and C are known to have masses at the threshold to brown dwarfs. From our spectra we measure rotation velocities and the mean magnetic field for all three components individually. We find magnetic flux on the order of several kilo-Gauss in all components. The rotation velocities of the two late-M objects B and C are similar (vsini = 16km/s), the earlier A component is spinning only at about half that rate. This suggests weakening of net rotational braking at late-M spectral type, and that the lack of slowly rotating late-M and L dwarfs is real. Furthermore, we found that magnetic flux in the B component is about twice as strong as in component C at similar rotation rate. This indicates that rotational braking is not proportional to magnetic field strength in fully convective objects, and that a different field topology is the reason for the weak braking in low mass objects.Comment: accepted for publication as A&A Lette

    Identification of strong photometric activity in the components of LHS 1070

    Full text link
    Activity in low-mass stars is an important ingredient in the evolution of such objects. Fundamental physical properties such as age, rotation, magnetic field are correlated with activity. Aims: We show that two components of the low-mass triple system LHS 1070 exhibit strong flaring activity. We identify the flaring components and obtained an improved astrometric solution for the LHS 1070 A/(B+C) system. Methods: Time-series CCD observations were used to monitor LHS 1070 in the B and I_C bands. H-band data were used to obtain accurate astrometry for the LHS 1070 A/(B+C) system. Results: We have found that two components of the triple system LHS 1070 exhibit photometric activity. We identified that components A and B are the flaring objects. We estimate the total energy, ~2.0 x 10^{33} ergs, and the magnetic field strength, ~5.5 kG, of the flare observed in LHS 1070 B. This event is the largest amplitude, \Delta B > 8.2 mag, ever observed in a flare star.Comment: 5 pages, 5 figures, accepted for publication in A&

    Fine structure of the chromospheric activity in Solar-type stars - The Halpha Line

    Full text link
    A calibration of H-alpha as both a chromospheric diagnostic and an age indicator is presented, complementing the works previously done on this subject (Herbig 1985, Pasquini & Pallavicini 1991. The chromospheric diagnostic was built with a statistically significant sample, covering nine years of observations, and including 175 solar neighborhood stars. Regarding the age indicator, the presence of stars for which very accurate ages are determined, such as those belonging to clusters and kinematic groups, lends confidence to our analysis. We also investigate the possibility that stars of the same age might have gone through different tracks of chromospheric decay, identifying - within the same age range - effects of metallicity and mass. These parameters, however, as well as age, seem to be significant only for dwarf stars, losing their meaning when we analyze stars in the subgiant branch. This result suggests that, in these evolved stars, the emission mechanism cannot be magnetohydrodynamical in nature, in agreement with recent models (Fawzy et al. 2002c, and references therein). The Sun is found to be a typical star in its H-alpha chromospheric flux, for its age, mass and metallicity. As a byproduct of this work, we developed an automatic method to determine temperatures from the wings of H-alpha, which means the suppression of the error inherent to the visual procedure used in the literature.Comment: 10 pages, 10 figures, accepted for publication in Astronomy & Astrophysics. Nature of replacement: match astro-ph and ADS title (greek letter
    • …
    corecore