96 research outputs found

    Aspects and consequences of a dressed-quark-gluon vertex

    Full text link
    Features of the dressed-quark-gluon vertex and their role in the gap and Bethe-Salpeter equations are explored. It is argued that quenched lattice data indicate the existence of net attraction in the colour-octet projection of the quark-antiquark scattering kernel. This attraction affects the uniformity with which solutions of truncated equations converge pointwise to solutions of the complete gap and vertex equations. For current-quark masses less than the scale set by dynamical chiral symmetry breaking, the dependence of the dressed-quark-gluon vertex on the current-quark mass is weak. The study employs a vertex model whose diagrammatic content is explicitly enumerable. That enables the systematic construction of a vertex-consistent Bethe-Salpeter kernel and thereby an exploration of the consequences for the strong interaction spectrum of attraction in the colour-octet channel. With rising current-quark mass the rainbow-ladder truncation is shown to provide an increasingly accurate estimate of a bound state's mass. Moreover, the calculated splitting between vector and pseudoscalar meson masses vanishes as the current-quark mass increases, which argues for the mass of the pseudoscalar partner of the \Upsilon(1S) to be above 9.4 GeV. The absence of colour-antitriplet diquarks from the strong interaction spectrum is contingent upon the net amount of attraction in the octet projected quark-antiquark scattering kernel. There is a window within which diquarks appear. The amount of attraction suggested by lattice results is outside this domain.Comment: 22 pages, 12 figure

    Avoiding the Landau-pole in perturbative QCD

    Get PDF
    We propose an alternative perturbative expansion for QCD. All scheme and scale dependence is reduced to one free parameter. Fixing this parameter with a fastest apparent convergence criterion gives sensible results in the whole energy region. We apply the expansion to the calculation of the zero flavor triple gluon vertex, the quark gluon vertex, the gluon propagator and the ghost propagator. A qualitative agreement with the corresponding lattice results is found.Comment: 18 pages, 8 figure

    Scaling behavior of the overlap quark propagator in Landau gauge

    Get PDF
    The properties of the momentum space quark propagator in Landau gauge are examined for the overlap quark action in quenched lattice QCD. Numerical calculations are done on three lattices with different lattice spacings and similar physical volumes to explore the approach of the quark propagator toward the continuum limit. We have calculated the nonperturbative momentum-dependent wave function renormalization function Z(p) and the nonperturbative mass function M(p) for a variety of bare quark masses and perform an extrapolation to the chiral limit. We find the behavior of Z(p) and M(p) are in reasonable agreement between the two finer lattices in the chiral limit, however the data suggest that an even finer lattice is desirable. The large momentum behavior is examined to determine the quark condensate.Comment: 9 pages, 5 figures, Revtex 4. Streamlined presentation, additional data. Final versio

    Nonperturbative improvement and tree-level correction of the quark propagator

    Get PDF
    We extend an earlier study of the Landau gauge quark propagator in quenched QCD where we used two forms of the O(a)-improved propagator with the Sheikholeslami-Wohlert quark action. In the present study we use the nonperturbative value for the clover coefficient c_sw and mean-field improvement coefficients in our improved quark propagators. We compare this to our earlier results which used the mean-field c_sw and tree-level improvement coefficients for the propagator. We also compare three different implementations of tree-level correction: additive, multiplicative, and hybrid. We show that the hybrid approach is the most robust and reliable and can successfully deal even with strong ultraviolet behavior and zero-crossing of the lattice tree-level expression. We find good agreement between our improved quark propagators when using the appropriate nonperturbative improvement coefficients and hybrid tree-level correction. We also present a simple extrapolation of the quark mass function to the chiral limit.Comment: 12 pages, 18 figures, RevTeX4. Some clarifications and corrections. Final version, to appear in Phys.Rev.

    Calculation of the Chiral Lagrangian Coefficients

    Get PDF
    We present a systematic way to combine the global color model and the instanton liquid model to calculate the chiral Lagrangian coefficients. Our numerical results are in agreement well with the experimental values.Comment: 7 pages, To appear in Chin.Phys.Lett, Year 200

    Quark and Nucleon Self-Energy in Dense Matter

    Get PDF
    In a recent work we introduced a nonlocal version of the Nambu--Jona-Lasinio(NJL) model that was designed to generate a quark self-energy in Euclidean space that was similar to that obtained in lattice simulations of QCD. In the present work we carry out related calculations in Minkowski space, so that we can study the effects of the significant vector and axial-vector interactions that appear in extended NJL models and which play an important role in the study of the ρ\rho, ω\omega and a1a_1 mesons. We study the modification of the quark self-energy in the presence of matter and find that our model reproduces the behavior of the quark condensate predicted by the model-independent relation ρ=<qˉq>0(1σNρN/fπ2mπ2+...)_{\rho} = <\bar qq>_0(1-\sigma_N\rho_N/f_{\pi}^2m_{\pi}^2 +...), where σN\sigma_N is the pion-nucleon sigma term and ρN\rho_N is the density of nuclear matter. (Since we do not include a model of confinement, our study is restricted to the analysis of quark matter. We provide some discussion of the modification of the above formula for quark matter.) The inclusion of a quark current mass leads to a second-order phase transition for the restoration of chiral symmetry. That restoration is about 80% at twice nuclear matter density for the model considered in this work. We also find that the part of the quark self-energy that is explicitly dependent upon density has a strong negative Lorentz-scalar term and a strong positive Lorentz-vector term, which is analogous to the self-energy found for the nucleon in nuclear matter when one makes use of the Dirac equation for the nucleon. In this work we calculate the nucleon self -energy in nuclear matter using our model of the quark self-energy and obtain satisfactory results.Comment: 19 pages, 8 figures, 2 tables, revte

    Ab initiocalculation of finite-temperature charmonium potentials

    Get PDF
    The interquark potential in charmonium states is calculated in both the zero and nonzero temperature phases from a first-principles lattice QCD calculation. Simulations with two dynamical quark flavors are used with temperatures T in the range 0.4Tc ≲ T ≲ 1.7Tc, where Tc is the deconfining temperature. The correlators of point-split operators are analyzed to gain spatial information about the charmonium states. A method introduced by the HAL QCD Collaboration and based on the Schrödinger equation is applied to obtain the interquark potential. We find a clear temperature dependence with the central potential agreeing with the Cornell potential in the confined phase and becoming flatter (more screened) as the temperature increases past the deconfining temperature. This is the first time the interquark potential has been calculated for realistic quarks at finite temperature

    A Monte Carlo simulation of ion transport at finite temperatures

    Full text link
    We have developed a Monte Carlo simulation for ion transport in hot background gases, which is an alternative way of solving the corresponding Boltzmann equation that determines the distribution function of ions. We consider the limit of low ion densities when the distribution function of the background gas remains unchanged due to collision with ions. A special attention has been paid to properly treat the thermal motion of the host gas particles and their influence on ions, which is very important at low electric fields, when the mean ion energy is comparable to the thermal energy of the host gas. We found the conditional probability distribution of gas velocities that correspond to an ion of specific velocity which collides with a gas particle. Also, we have derived exact analytical formulas for piecewise calculation of the collision frequency integrals. We address the cases when the background gas is monocomponent and when it is a mixture of different gases. The developed techniques described here are required for Monte Carlo simulations of ion transport and for hybrid models of non-equilibrium plasmas. The range of energies where it is necessary to apply the technique has been defined. The results we obtained are in excellent agreement with the existing ones obtained by complementary methods. Having verified our algorithm, we were able to produce calculations for Ar+^+ ions in Ar and propose them as a new benchmark for thermal effects. The developed method is widely applicable for solving the Boltzmann equation that appears in many different contexts in physics.Comment: 14 page

    Gluon Propagator in the Infrared Region

    Get PDF
    The gluon propagator is calculated in quenched QCD for two different lattice sizes (16^3x48 and 32^3x64) at beta=6.0. The volume dependence of the propagator in Landau gauge is studied. The smaller lattice is instrumental in revealing finite volume and anisotropic lattice artefacts. Methods for minimising these artefacts are developed and applied to the larger lattice data. New structure seen in the infrared region survives these conservative cuts to the lattice data. This structure serves to rule out a number of models that have appeared in the literature. A fit to a simple analytical form capturing the momentum dependence of the nonperturbative gluon propagator is also reported.Comment: 13 pages, 9 figures, using RevTeX. Submitted to Phys. Rev. D. This and related papers can also be obtained from http://www.physics.adelaide.edu.au/~jskuller/papers
    corecore