6 research outputs found

    External validation of prognostic models predicting pre-eclampsia : individual participant data meta-analysis

    Get PDF
    Abstract Background Pre-eclampsia is a leading cause of maternal and perinatal mortality and morbidity. Early identification of women at risk during pregnancy is required to plan management. Although there are many published prediction models for pre-eclampsia, few have been validated in external data. Our objective was to externally validate published prediction models for pre-eclampsia using individual participant data (IPD) from UK studies, to evaluate whether any of the models can accurately predict the condition when used within the UK healthcare setting. Methods IPD from 11 UK cohort studies (217,415 pregnant women) within the International Prediction of Pregnancy Complications (IPPIC) pre-eclampsia network contributed to external validation of published prediction models, identified by systematic review. Cohorts that measured all predictor variables in at least one of the identified models and reported pre-eclampsia as an outcome were included for validation. We reported the model predictive performance as discrimination (C-statistic), calibration (calibration plots, calibration slope, calibration-in-the-large), and net benefit. Performance measures were estimated separately in each available study and then, where possible, combined across studies in a random-effects meta-analysis. Results Of 131 published models, 67 provided the full model equation and 24 could be validated in 11 UK cohorts. Most of the models showed modest discrimination with summary C-statistics between 0.6 and 0.7. The calibration of the predicted compared to observed risk was generally poor for most models with observed calibration slopes less than 1, indicating that predictions were generally too extreme, although confidence intervals were wide. There was large between-study heterogeneity in each model’s calibration-in-the-large, suggesting poor calibration of the predicted overall risk across populations. In a subset of models, the net benefit of using the models to inform clinical decisions appeared small and limited to probability thresholds between 5 and 7%. Conclusions The evaluated models had modest predictive performance, with key limitations such as poor calibration (likely due to overfitting in the original development datasets), substantial heterogeneity, and small net benefit across settings. The evidence to support the use of these prediction models for pre-eclampsia in clinical decision-making is limited. Any models that we could not validate should be examined in terms of their predictive performance, net benefit, and heterogeneity across multiple UK settings before consideration for use in practice. Trial registration PROSPERO ID: CRD42015029349

    First Trimester Urine and Serum Metabolomics for Prediction of Preeclampsia and Gestational Hypertension: A Prospective Screening Study

    No full text
    Hypertensive disorders of pregnancy, including preeclampsia, are major contributors to maternal morbidity. The goal of this study was to evaluate the potential of metabolomics to predict preeclampsia and gestational hypertension from urine and serum samples in early pregnancy, and elucidate the metabolic changes related to the diseases. Metabolic profiles were obtained by nuclear magnetic resonance spectroscopy of serum and urine samples from 599 women at medium to high risk of preeclampsia (nulliparous or previous preeclampsia/gestational hypertension). Preeclampsia developed in 26 (4.3%) and gestational hypertension in 21 (3.5%) women. Multivariate analyses of the metabolic profiles were performed to establish prediction models for the hypertensive disorders individually and combined. Urinary metabolomic profiles predicted preeclampsia and gestational hypertension at 51.3% and 40% sensitivity, respectively, at 10% false positive rate, with hippurate as the most important metabolite for the prediction. Serum metabolomic profiles predicted preeclampsia and gestational hypertension at 15% and 33% sensitivity, respectively, with increased lipid levels and an atherogenic lipid profile as most important for the prediction. Combining maternal characteristics with the urinary hippurate/creatinine level improved the prediction rates of preeclampsia in a logistic regression model. The study indicates a potential future role of clinical importance for metabolomic analysis of urine in prediction of preeclampsia

    Validation and development of models using clinical, biochemical and ultrasound markers for predicting pre-eclampsia : an individual participant data meta-analysis

    Get PDF
    Background: Pre-eclampsia is a leading cause of maternal and perinatal mortality and morbidity. Early identification of women at risk is needed to plan management. Objective : To assess the performance of existing pre-eclampsia prediction models and to develop and validate models for pre-eclampsia using individual participant data meta-analysis. We also estimated the prognostic value of individual markers. Design: This was an individual participant data meta-analysis of cohort studies. Setting: Source data from secondary and tertiary care. Predictors: We identified predictors from systematic reviews, and prioritised for importance in an international survey. Primary outcomes Early-onset (delivery at = 34 weeks' gestation) and any-onset pre-eclampsia. Analysis: We externally validated existing prediction models in UK cohorts and reported their performance in terms of discrimination and calibration. We developed and validated 12 new models based on clinical characteristics, clinical characteristics and biochemical markers, and clinical characteristics and ultrasound markers in the first and second trimesters. We summarised the data set-specific performance of each model using a random-effects meta-analysis. Discrimination was considered promising for C-statistics of >= 0.7, and calibration was considered good if the slope was near 1 and calibration-in-the-large was near 0. Heterogeneity was quantified using l(2) and tau(2). A decision curve analysis was undertaken to determine the clinical utility (net benefit) of the models. We reported the unadjusted prognostic value of individual predictors for pre-eclampsia as odds ratios with 95% confidence and prediction intervals. Result The International Prediction of Pregnancy Complications network comprised 78 studies (3,570,993 singleton pregnancies) identified from systematic reviews of tests to predict pre-eclampsia. Twenty-four of the 131 published prediction models could be validated in 11 UK cohorts. Summary C-statistics were between 0.6 and 0.7 for most models, and calibration was generally poor owing to large between-study heterogeneity, suggesting model overfitting. The clinical utility of the models varied between showing net harm to showing minimal or no net benefit. The average discrimination for IPPIC models ranged between 0.68 and 0.83. This was highest for the second-trimester clinical characteristics and biochemical markers model to predict early-onset pre-eclampsia, and lowest for the first-trimester clinical characteristics models to predict any pre-eclampsia. Calibration performance was heterogeneous across studies. Net benefit was observed for International Prediction of Pregnancy Complications first and second-trimester clinical characteristics and clinical characteristics and biochemical markers models predicting any pre-eclampsia, when validated in singleton nulliparous women managed in the UK NHS. History of hypertension, parity, smoking, mode of conception, placental growth factor and uterine artery pulsatility index had the strongest unadjusted associations with pre-eclampsia. Limitations: Variations in study population characteristics, type of predictors reported, too few events in some validation cohorts and the type of measurements contributed to heterogeneity in performance of the International Prediction of Pregnancy Complications models. Some published models were not validated because model predictors were unavailable in the individual participant data. Conclusion: For models that could be validated, predictive performance was generally poor across data sets. Although the International Prediction of Pregnancy Complications models show good predictive performance on average, and in the singleton nulliparous population, heterogeneity in calibration performance is likely across settings. Future work: Recalibration of model parameters within populations may improve calibration performance. Additional strong predictors need to be identified to improve model performance and consistency. Validation, including examination of calibration heterogeneity, is required for the models we could not validate.Peer reviewe

    External validation of prognostic models predicting pre-eclampsia: individual participant data meta-analysis

    No full text
    Background Pre-eclampsia is a leading cause of maternal and perinatal mortality and morbidity. Early identification of women at risk during pregnancy is required to plan management. Although there are many published prediction models for pre-eclampsia, few have been validated in external data. Our objective was to externally validate published prediction models for pre-eclampsia using individual participant data (IPD) from UK studies, to evaluate whether any of the models can accurately predict the condition when used within the UK healthcare setting. Methods IPD from 11 UK cohort studies (217,415 pregnant women) within the International Prediction of Pregnancy Complications (IPPIC) pre-eclampsia network contributed to external validation of published prediction models, identified by systematic review. Cohorts that measured all predictor variables in at least one of the identified models and reported pre-eclampsia as an outcome were included for validation. We reported the model predictive performance as discrimination (C-statistic), calibration (calibration plots, calibration slope, calibration-in-the-large), and net benefit. Performance measures were estimated separately in each available study and then, where possible, combined across studies in a random-effects meta-analysis. Results Of 131 published models, 67 provided the full model equation and 24 could be validated in 11 UK cohorts. Most of the models showed modest discrimination with summary C-statistics between 0.6 and 0.7. The calibration of the predicted compared to observed risk was generally poor for most models with observed calibration slopes less than 1, indicating that predictions were generally too extreme, although confidence intervals were wide. There was large between-study heterogeneity in each model’s calibration-in-the-large, suggesting poor calibration of the predicted overall risk across populations. In a subset of models, the net benefit of using the models to inform clinical decisions appeared small and limited to probability thresholds between 5 and 7%. Conclusions The evaluated models had modest predictive performance, with key limitations such as poor calibration (likely due to overfitting in the original development datasets), substantial heterogeneity, and small net benefit across settings. The evidence to support the use of these prediction models for pre-eclampsia in clinical decision-making is limited. Any models that we could not validate should be examined in terms of their predictive performance, net benefit, and heterogeneity across multiple UK settings before consideration for use in practice
    corecore