8 research outputs found
Recommended from our members
Contact-dependent signaling triggers tumor-like proliferation of CCM3 knockout endothelial cells in co-culture with wild-type cells
Cerebral cavernous malformations (CCM) are low-flow vascular lesions prone to cause severe hemorrhage-associated neurological complications. Pathogenic germline variants in CCM1, CCM2, or CCM3 can be identified in nearly 100% of CCM patients with a positive family history. In line with the concept that tumor-like mechanisms are involved in CCM formation and growth, we here demonstrate an abnormally increased proliferation rate of CCM3-deficient endothelial cells in co-culture with wild-type cells and in mosaic human iPSC-derived vascular organoids. The observation that NSC59984, an anticancer drug, blocked the abnormal proliferation of mutant endothelial cells further supports this intriguing concept. Fluorescence-activated cell sorting and RNA sequencing revealed that co-culture induces upregulation of proangiogenic chemokine genes in wild-type endothelial cells. Furthermore, genes known to be significantly downregulated in CCM3â/â endothelial cell mono-cultures were upregulated back to normal levels in co-culture with wild-type cells. These results support the hypothesis that wild-type ECs facilitate the formation of a niche that promotes abnormal proliferation of mutant ECs. Thus, targeting the cancer-like features of CCMs is a promising new direction for drug development
Novel Pathogenic Variants in a Cassette Exon of CCM2 in Patients With Cerebral Cavernous Malformations
Autosomal dominant cerebral cavernous malformation (CCM) represents a genetic disorder with a high mutation detection rate given that stringent inclusion criteria are used and copy number variation analyses are part of the diagnostic workflow. Pathogenic variants in either CCM1 (KRIT1), CCM2 or CCM3 (PDCD10) can be identified in 87â98% of CCM families with at least two affected individuals. However, the interpretation of novel sequence variants in the 5âČ-region of CCM2 remains challenging as there are various alternatively spliced transcripts and different transcription start sites. Comprehensive genetic and clinical data of CCM2 patients with variants in cassette exons that are either skipped or included into alternative CCM2 transcripts in the splicing process can significantly facilitate clinical variant interpretation. We here report novel pathogenic CCM2 variants in exon 3 and the adjacent donor splice site, describe the natural history of CCM disease in mutation carriers and provide further evidence for the classification of the amino acids encoded by the nucleotides of this cassette exon as a critical region within CCM2. Finally, we illustrate the advantage of a combined single nucleotide and copy number variation detection approach in NGS-based CCM1/CCM2/CCM3 gene panel analyses which can significantly reduce diagnostic turnaround time
Komplexe Zellkulturmodelle und CRISPR/Cas9-basierte Nanopore-Sequenzierung in der Forschung zu zerebralen kavernösen Malformationen
Bei der familiÀren Form zerebraler kavernöser Malformationen (CCMs) handelt es sich um eine autosomal-dominant erbliche Erkrankung, die durch pathogene Keimbahnvarianten in den Genen CCM1/KRIT1, CCM2 bzw. CCM3/PDCD10 ausgelöst wird und mit einer PrÀvalenz von 1:3300 bis 1:3800 in der Allgemeinbevölkerung vorkommt. Neben Punktmutationen und kleinen Indels werden auch Strukturvarianten (SVs) in den Krankheitsgenen beobachtet. Diese sind jedoch mithilfe von Short-Read-basierten Genpanel- oder Exomsequenzierungen in der Routinediagnostik zum Teil nur schwer zu identifizieren.
Im Rahmen der vorliegenden Arbeit wurde daher eine neue CRISPR/Cas9-basierte Nanopore-Sequenzierung der Gene CCM1, CCM2 und CCM3 sowie der flankierenden genomischen Regionen etabliert. Die Abdeckung der Zielregionen mit Reads lĂ€nger als 20 kb erlaubte die zuverlĂ€ssige Detektion von KopienzahlverĂ€nderungen. DarĂŒber hinaus konnte anhand einer interchromosomalen Insertion und einer 24 kb groĂen Inversion gezeigt werden, dass die Methode auch komplexere SVs nachweisen kann. Das Protokoll einer Cas9-basierten Sequenzierung ausgewĂ€hlter genomischer Zielregionen auf der MinION-Plattform kann gut auf andere Fragestellungen ĂŒbertragen werden und lĂ€sst sich mit vergleichsweise geringem Aufwand in vielen Laboren etablieren.
Ein zweiter Schwerpunkt der Promotionsarbeit lag auf der Entwicklung neuer, vielseitig einsetzbarer Zellkulturmodelle der CCM-Erkrankung. Mithilfe CRISPR/Cas9-vermittelter Genomeditierungen in fluoreszenzmarkierten humanen induzierten pluripotenten Stammzellen (hiPSCs) konnten komplexe Kokulturmodelle sowie dreidimensionale vaskulĂ€re Organoidkulturen etabliert werden. Anhand von aus CCM3-defizienten hiPSCs differenzierten humanen Endothelzellen (ECs) und vaskulĂ€ren Mosaikorganoiden lieĂ sich ein klonaler Ăberlebensvorteil von CCM3-/--Zellen in Kokultur mit Wildtyp-Zellen nachweisen, welcher kĂŒrzlich auch in CCM-Mausmodellen als SchlĂŒsselelement der CCM-Pathogenese beschrieben wurde. In den neuen Zellkulturmodellen lieĂ sich auch der positive Effekt des in der Greifswalder Arbeitsgruppe identifizierten Kandidatenwirkstoffs NSC59984 auf die tumorĂ€hnliche Proliferation von CCM3-/--Zellen in Kokultur validieren. Durch systematische RNA-Sequenzierungen konnte zudem nachgewiesen werden, dass CCM1 fĂŒr die Differenzierung von ECs aus hiPSCs nicht erforderlich ist, jedoch die physiologische Funktion von ECs aufrechterhĂ€lt.
Die Ergebnisse der vorliegenden Arbeiten belegen nicht nur die PraktikabilitÀt und Sicherheit der Identifizierung komplexer genomischer Strukturvarianten mittels CRISPR/Cas9-vermittelter Nanopore-Sequenzierungen, sondern sie ebnen zudem den Weg zur effektiven Testung neuer CCM-TherapieansÀtze im Hochdurchsatzverfahren und erlauben einen neuen Einblick in die noch immer unvollstÀndig verstandene CCM-Pathogenese
Endothelial Differentiation of <i>CCM1</i> Knockout iPSCs Triggers the Establishment of a Specific Gene Expression Signature
Cerebral cavernous malformation (CCM) is a neurovascular disease that can lead to seizures and stroke-like symptoms. The familial form is caused by a heterozygous germline mutation in either the CCM1, CCM2, or CCM3 gene. While the importance of a second-hit mechanism in CCM development is well established, it is still unclear whether it immediately triggers CCM development or whether additional external factors are required. We here used RNA sequencing to study differential gene expression in CCM1 knockout induced pluripotent stem cells (CCM1â/â iPSCs), early mesoderm progenitor cells (eMPCs), and endothelial-like cells (ECs). Notably, CRISPR/Cas9-mediated inactivation of CCM1 led to hardly any gene expression differences in iPSCs and eMPCs. However, after differentiation into ECs, we found the significant deregulation of signaling pathways well known to be involved in CCM pathogenesis. These data suggest that a microenvironment of proangiogenic cytokines and growth factors can trigger the establishment of a characteristic gene expression signature upon CCM1 inactivation. Consequently, CCM1â/â precursor cells may exist that remain silent until entering the endothelial lineage. Collectively, not only downstream consequences of CCM1 ablation but also supporting factors must be addressed in CCM therapy development
Using CRISPR/Cas9 genome editing in human iPSCs for deciphering the pathogenicity of a novel CCM1 transcription start site deletion
Cerebral cavernous malformations are clusters of aberrant vessels that can lead to severe neurological complications. Pathogenic loss-of-function variants in the CCM1, CCM2, or CCM3 gene are associated with the autosomal dominant form of the disease. While interpretation of variants in protein-coding regions of the genes is relatively straightforward, functional analyses are often required to evaluate the impact of non-coding variants. Because of multiple alternatively spliced transcripts and different transcription start points, interpretation of variants in the 5âČ untranslated and upstream regions of CCM1 is particularly challenging. Here, we identified a novel deletion of the non-coding exon 1 of CCM1 in a proband with multiple CCMs which was initially classified as a variant of unknown clinical significance. Using CRISPR/Cas9 genome editing in human iPSCs, we show that the deletion leads to loss of CCM1 protein and deregulation of KLF2, THBS1, NOS3, and HEY2 expression in iPSC-derived endothelial cells. Based on these results, the variant could be reclassified as likely pathogenic. Taken together, variants in regulatory regions need to be considered in genetic CCM analyses. Our study also demonstrates that modeling variants of unknown clinical significance in an iPSC-based system can help to come to a final diagnosis
Cas9-Mediated Nanopore Sequencing Enables Precise Characterization of Structural Variants in CCM Genes
Deletions in the CCM1, CCM2, and CCM3 genes are a common cause of familial cerebral cavernous malformations (CCMs). In current molecular genetic laboratories, targeted next-generation sequencing or multiplex ligation-dependent probe amplification are mostly used to identify copy number variants (CNVs). However, both techniques are limited in their ability to specify the breakpoints of CNVs and identify complex structural variants (SVs). To overcome these constraints, we established a targeted Cas9-mediated nanopore sequencing approach for CNV detection with single nucleotide resolution. Using a MinION device, we achieved complete coverage for the CCM genes and determined the exact size of CNVs in positive controls. Long-read sequencing for a CCM1 and CCM2 CNV revealed that the adjacent ANKIB1 and NACAD genes were also partially or completely deleted. In addition, an interchromosomal insertion and an inversion in CCM2 were reliably re-identified by long-read sequencing. The refinement of CNV breakpoints by long-read sequencing enabled fast and inexpensive PCR-based variant confirmation, which is highly desirable to reduce costs in subsequent family analyses. In conclusion, Cas9-mediated nanopore sequencing is a cost-effective and flexible tool for molecular genetic diagnostics which can be easily adapted to various target regions
Contact-dependent signaling triggers tumor-like proliferation of CCM3 knockout endothelial cells in co-culture with wild-type cells
Cerebral cavernous malformations (CCM) are low-flow vascular lesions prone to cause severe hemorrhage-associated neurological complications. Pathogenic germline variants in CCM1, CCM2, or CCM3 can be identified in nearly 100% of CCM patients with a positive family history. In line with the concept that tumor-like mechanisms are involved in CCM formation and growth, we here demonstrate an abnormally increased proliferation rate of CCM3-deficient endothelial cells in co-culture with wild-type cells and in mosaic human iPSC-derived vascular organoids. The observation that NSC59984, an anticancer drug, blocked the abnormal proliferation of mutant endothelial cells further supports this intriguing concept. Fluorescence-activated cell sorting and RNA sequencing revealed that co-culture induces upregulation of proangiogenic chemokine genes in wild-type endothelial cells. Furthermore, genes known to be significantly downregulated in CCM3(-/-) endothelial cell mono-cultures were upregulated back to normal levels in co-culture with wild-type cells. These results support the hypothesis that wild-type ECs facilitate the formation of a niche that promotes abnormal proliferation of mutant ECs. Thus, targeting the cancer-like features of CCMs is a promising new direction for drug development
Novel Pathogenic Variants in a Cassette Exon of CCM2 in Patients With Cerebral Cavernous Malformations
Autosomal dominant cerebral cavernous malformation (CCM) represents a genetic disorder with a high mutation detection rate given that stringent inclusion criteria are used and copy number variation analyses are part of the diagnostic workflow. Pathogenic variants in either CCM1 (KRIT1), CCM2 or CCM3 (PDCD10) can be identified in 87â98% of CCM families with at least two affected individuals. However, the interpretation of novel sequence variants in the 5âČ-region of CCM2 remains challenging as there are various alternatively spliced transcripts and different transcription start sites. Comprehensive genetic and clinical data of CCM2 patients with variants in cassette exons that are either skipped or included into alternative CCM2 transcripts in the splicing process can significantly facilitate clinical variant interpretation. We here report novel pathogenic CCM2 variants in exon 3 and the adjacent donor splice site, describe the natural history of CCM disease in mutation carriers and provide further evidence for the classification of the amino acids encoded by the nucleotides of this cassette exon as a critical region within CCM2. Finally, we illustrate the advantage of a combined single nucleotide and copy number variation detection approach in NGS-based CCM1/CCM2/CCM3 gene panel analyses which can significantly reduce diagnostic turnaround time