33 research outputs found
On a Symmetry Argument for the Guidance Equation in Bohmian Mechanics
Bohmian mechanics faces an underdetermination problem: when it comes to solving the measurement problem, alternatives to the Bohmian guidance equation work just as well as the official guidance equation. Dürr, Goldstein, and Zanghì have argued that of the candidate guidance equations, the official guidance equation is the simplest Galilean‐invariant candidate. This symmetry argument—if it worked—would solve the underdetermination problem. But the argument does not work. It fails because it rests on assumptions about how Galilean transformations (especially boosts) act on the wavefunction that are (in this context) unwarranted. My discussion has larger morals about the physical significance of certain mathematical results (like, for example, Wigner’s theorem) in non‐orthodox interpretations of quantum mechanics
Bovine NK-lysin : Copy number variation and functional diversification
NK-lysin is an antimicrobial peptide and effector protein in the host innate immune system. It is coded by a single gene in humans and most other mammalian species. In this study, we provide evidence for the existence of four NK-lysin genes in a repetitive region on cattle chromosome 11. The NK2A, NK2B, and NK2C genes are tandemly arrayed as three copies in similar to 30-35-kb segments, located 41.8 kb upstream of NK1. All four genes are functional, albeit with differential tissue expression. NK1, NK2A, and NK2B exhibited the highest expression in intestine Peyer's patch, whereas NK2C was expressed almost exclusively in lung. The four peptide products were synthesized ex vivo, and their antimicrobial effects against both Gram-positive and Gram-negative bacteria were confirmed with a bacteria-killing assay. Transmission electron microcopy indicated that bovine NK-lysins exhibited their antimicrobial activities by lytic action in the cell membranes. In summary, the single NK-lysin gene in other mammals has expanded to a four-member gene family by tandem duplications in cattle; all four genes are transcribed, and the synthetic peptides corresponding to the core regions are biologically active and likely contribute to innate immunity in ruminants