86 research outputs found

    Aging Affects the Mental Rotation of Left and Right Hands

    Get PDF
    BACKGROUND:Normal aging significantly influences motor and cognitive performance. Little is known about age-related changes in action simulation. Here, we investigated the influence of aging on implicit motor imagery. METHODOLOGY/PRINCIPAL FINDINGS:Twenty young (mean age: 23.9+/-2.8 years) and nineteen elderly (mean age: 78.3+/-4.5 years) subjects, all right-handed, were required to determine the laterality of hands presented in various positions. To do so, they mentally rotated their hands to match them with the hand-stimuli. We showed that: (1) elderly subjects were affected in their ability to implicitly simulate movements of the upper limbs, especially those requiring the largest amplitude of displacement and/or with strong biomechanical constraints; (2) this decline was greater for movements of the non-dominant arm than of the dominant arm. CONCLUSIONS/SIGNIFICANCE:These results extend recent findings showing age-related alterations of the explicit side of motor imagery. They suggest that a general decline in action simulation occurs with normal aging, in particular for the non-dominant side of the body

    Smooth Muscle miRNAs Are Critical for Post-Natal Regulation of Blood Pressure and Vascular Function

    Get PDF
    Phenotypic modulation of smooth muscle cells (SMCs) plays a key role in vascular disease, including atherosclerosis. Several transcription factors have been suggested to regulate phenotypic modulation of SMCs but the decisive mechanisms remain unknown. Recent reports suggest that specific microRNAs (miRNAs) are involved in SMC differentiation and vascular disease but the global role of miRNAs in postnatal vascular SMC has not been elucidated. Thus, the objective of this study was to identify the role of Dicer-dependent miRNAs for blood pressure regulation and vascular SMC contractile function and differentiation in vivo. Tamoxifen-inducible and SMC specific deletion of Dicer was achieved by Cre-Lox recombination. Deletion of Dicer resulted in a global loss of miRNAs in aortic SMC. Furthermore, Dicer-deficient mice exhibited a dramatic reduction in blood pressure due to significant loss of vascular contractile function and SMC contractile differentiation as well as vascular remodeling. Several of these results are consistent with our previous observations in SM-Dicer deficient embryos. Therefore, miRNAs are essential for maintaining blood pressure and contractile function in resistance vessels. Although the phenotype of miR-143/145 deficient mice resembles the loss of Dicer, the phenotypes of SM-Dicer KO mice were far more severe suggesting that additional miRNAs are involved in maintaining postnatal SMC differentiation

    In Vitro and In Vivo Antagonism of a G Protein-Coupled Receptor (S1P3) with a Novel Blocking Monoclonal Antibody

    Get PDF
    Background: S1P 3 is a lipid-activated G protein-couple receptor (GPCR) that has been implicated in the pathological processes of a number of diseases, including sepsis and cancer. Currently, there are no available high-affinity, subtypeselective drug compounds that can block activation of S1P3. We have developed a monoclonal antibody (7H9) that specifically recognizes S1P3 and acts as a functional antagonist. Methodology/Principal Findings: Specific binding of 7H9 was demonstrated by immunocytochemistry using cells that over-express individual members of the S1P receptor family. We show, in vitro, that 7H9 can inhibit the activation of S1P3mediated cellular processes, including arrestin translocation, receptor internalization, adenylate cyclase inhibiton, and calcium mobilization. We also demonstrate that 7H9 blocks activation of S1P3 in vivo, 1) by preventing lethality due to systemic inflammation, and 2) by altering the progression of breast tumor xenografts. Conclusions/Significance: We have developed the first-reported monoclonal antibody that selectively recognizes a lipidactivated GPCR and blocks functional activity. In addition to serving as a lead drug compound for the treatment of sepsi

    Intracellular S1P Generation Is Essential for S1P-Induced Motility of Human Lung Endothelial Cells: Role of Sphingosine Kinase 1 and S1P Lyase

    Get PDF
    Earlier we have shown that extracellular sphingosine-1-phosphate (S1P) induces migration of human pulmonary artery endothelial cells (HPAECs) through the activation of S1P(1) receptor, PKCε, and PLD2-PKCζ-Rac1 signaling cascade. As endothelial cells generate intracellular S1P, here we have investigated the role of sphingosine kinases (SphKs) and S1P lyase (S1PL), that regulate intracellular S1P accumulation, in HPAEC motility

    Highlights lecture EANM 2015: the search for nuclear medicine’s superheroes

    Get PDF
    The EANM 2015 Annual Congress, held from October 10th to 14th in Hamburg, Germany, was outstanding in many respects. With 5550 participants, this was by far the largest European congress concerning nuclear medicine. More than 1750 scientific presentations were submitted, with more than 250 abstracts from young scientists, indicating that the future success of our discipline is fuelled by a high number of young individuals becoming involved in a multitude of scientific activities. Significant improvements have been made in molecular imaging of cancer, particularly in prostate cancer. PSMA-directed PET/CT appears to become a new gold standard for staging and restaging purposes. Novel tumour specific compounds have shown their potential for target identification also in other solid neoplasms and further our understanding of tumour biology and heterogeneity. In addition, a variety of nuclear imaging techniques guiding surgical interventions have been introduced. A particular focus of the congress was put on targeted, radionuclide based therapies. Novel theranostic concepts addressing also tumour entities with high incidence rates such as prostate cancer, melanoma, and lymphoma, have shown effective anti-tumour activity. Strategies have been presented to improve further already established therapeutic regimens such as somatostatin receptor based radio receptor therapy for treating advanced neuroendocrine tumours. Significant contributions were presented also in the neurosciences track. An increasing number of target structures of high interest in neurology and psychiatry are now available for PET and SPECT imaging, facilitating specific imaging of different subtypes of dementia and movement disorders as well as neuroinflammation. Major contributions in the cardiovascular track focused on further optimization of cardiac perfusion imaging by reducing radiation exposure, reducing scanning time, and improving motion correction. Besides coronary artery disease, many contributions focused on cardiac inflammation, cardiac sarcoidosis, and specific imaging of large vessel vasculitis. The physics and instrumentation track included many highlights such as novel, high resolution scanners. The most noteworthy news and developments of this meeting were summarized in the highlights lecture. Only 55 scientific contributions were mentioned, and hence they represent only a brief summary, which is outlined in this article. For a more detailed view, all presentations can be accessed by the online version of the European Journal of Nuclear Medicine and Molecular Imaging (Volume 42, Supplement 1)

    Severe osteoporosis with multiple spontaneous vertebral fractures in a young male carrying triple polymorphisms in the vitamin D receptor, collagen type 1, and low-density lipoprotein receptor-related peptide 5 genes

    No full text
    Osteoporosis is a common disease with a strong genetic component. Several studies have reported the vitamin D receptor (VDR), collagen type I (COL1A1), and LDL receptor-related protein 5 (LRP5) genes as the most likely candidates. However, most of the studies have been carried out in postmenopausal women and older men and show inconsistent results. CASE PRESENTATION: We report a case of a 26-year old male who presented with severe back pain of acute onset, unrelated to any kind of trauma, and diffuse myalgia. Imaging of the lumbar and the thoracic spine revealed two Grade 3, according to Genant’s semiquantitative method, vertebral fractures in T10 and T11 and multiple Grade 1 and 2 fractures from T8 to L2. Measurement of bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) (Lunar Prodigy) showed severe osteoporosis of the lumbar spine (Z-score=-3.0, BMD = 0.866 gr/cm2). A complete laboratory and biochemical work-up was performed to exclude secondary causes of osteoporosis. Total genomic DNA was extracted from peripheral blood and was used as a template for genotype analysis. The patient was heterozygous for the p.V667M mutation of the LRP5 gene and for the BsmI [g.63980 G→A, rs1544410] and Sp1 polymorphisms [g.6252 G→T, rs1800012] of the VDR and COL1A1 genes, respectively. Further genotype analysis excluded types of osteogenesis imperfecta associated with mutations in the COL1A1 and COL1A2 genes. CONCLUSION: We herein show that the co-existence of three polymorphic sites in the VDR, COL1A1, and LPR-5 genes in a young male adult caused severe osteoporosis with multiple fractures, suggesting a combined effect and/or interaction between these genes. © 2016, Hellenic Endocrine Society. All rights reserved

    Emergence of NDM-1-producing Klebsiella pneumoniae in Greece: evidence of a widespread clonal outbreak

    No full text
    OBJECTIVES: NDM-producing Enterobacteriaceae clinical isolates remain uncommon in the European region. We describe the emergence and broad dissemination of one successful NDM-1-producing Klebsiella pneumoniae clone in Greek hospitals. METHODS: During a 4 year survey (January 2013-December 2016), 480 single-patient carbapenem non-susceptible K. pneumoniae isolates, phenotypically MBL positive, were consecutively recovered in eight Greek hospitals from different locations and subjected to further investigation. Antimicrobial susceptibility testing, combined-disc test, identification of resistance genes by PCR and sequencing, molecular fingerprinting by PFGE, plasmid profiling, replicon typing, conjugation experiments and MLST were performed. RESULTS: Molecular analysis confirmed the presence of the blaNDM-1 gene in 341 (71%) K. pneumoniae isolates. A substantially increasing trend of NDM-1-producing K. pneumoniae was noticed during the survey (R2 = 0.9724). Most blaNDM-1-carrying isolates contained blaCTX-M-15, blaOXA-1, blaOXA-2 and blaTEM-1 genes. PFGE analysis clustered NDM-1 producers into five distinct clonal types, with five distinct STs related to each PFGE clone. The predominant ST11 PFGE clonal type was detected in all eight participating hospitals, despite adherence to the national infection control programme; it was identical to that observed in the original NDM-1 outbreak in Greece in 2011, as well as in a less-extensive NDM-1 outbreak in Bulgaria in 2015. The remaining four ST clonal types (ST15, ST70, ST258 and ST1883) were sporadically detected. blaNDM-1 was located in IncFII-type plasmids in all five clonal types. CONCLUSIONS: This study gives evidence of possibly the largest NDM-1-producing K. pneumoniae outbreak in Europe; it may also reinforce the hypothesis of an NDM-1 clone circulating in the Balkans. © The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: [email protected]
    corecore