28 research outputs found

    Reconnection and Disconnection: Observations of Suprathermal Electron Heat Flux Dropouts

    Get PDF
    Suprathermal electron heat flux dropouts (HFD) serve as a sensitive test of the magnetic topology of the inner heliosphere. Since the heat flux electron strahl always flows away from the Sun, a heat flux dropout should indicate either that the magnetic field line is completely disconnected from the Sun or that the heat flux strahl is scattered into other pitch angles. We present observations of two suprathermal electron heat flux dropout events observed by the Advanced Composition Explorer (ACE) spacecraft which occur simultaneously with impulsive energetic ion events. Since suprathermal electrons encompass the same velocity range as ions with energies of a few MeV/nucleon, the similarities and differences between them as observed at 1 AU probes the sources and transport of these two species. We compare the two events to show the difference between the signatures of a simple disconnection and a more complicated reconnection scenario. Comparing suprathermal electron modulations with energetic ion modulations is a powerful technique for determining the magnetic topology between particle injection at the Sun and observation at 1 AU

    Solar Cycle Variations In The Electron Heat Flux: Ulysses Observations

    Get PDF
    Solar wind observations by the Ulysses spacecraft now include nearly ten years of continuous ion and electron measurements. In this study, we report detailed measurements of the electron heat flux in the solar wind. In particular, we examine the heat flux measurements for long-term correlations with wave activity and solar wind speed. We find that the average heat flux, when scaled by R2,9to account for variations due to distance from the Sun, is constant and independent of heliographic latitude or solar cycle. We find that during both solar maximum and solar minimum, there is no significant correlation between the magnitude of the electron heat flux and the solar wind speed. Comparison of the electron heat flux data with wave activity indicates that the whistler heat flux instability does not play an important role in limiting the solar wind heat flux

    Use of single-component wind speed in Rankine-Hugoniot analysis of interplanetary shocks

    Get PDF
    We have extended and deployed a routine designed to run independently on the Web providing real-time analysis of interplanetary shock observations from L_1. The program accesses real-time magnetic field, solar wind speed, and proton density data from the Advanced Composition Explorer (ACE) spacecraft, searches for interplanetary shocks, analyzes shocks according to the Rankine-Hugoniot (R-H) jump conditions, and provides shock solutions on the Web for space weather applications. Because the ACE real-time data stream contains the wind speed but not the three-component wind velocity, we describe modifications to the R-H analysis that use the scalar wind speed and show successful results for analyses of strong interplanetary shocks at 1 AU. We compare the three-component and one-component solutions and find the greatest disagreement between the two rests in estimations of the shock speed rather than the shock propagation direction. Uncertainties in magnetic quantities such as magnetic compression and shock normal angle relative to the upstream magnetic field show large uncertainties in both analyses when performed using an automated routine whereas analyses of the shock normal alone do not. The automated data point selection scheme, together with the natural variability of the magnetic field, is inferred to be a problem in a few instances for this and other reasons. For a broad range of interplanetary shocks that arrive 30 to 60 min after passing L_1, this method will provide 15 to 45 min of advanced warning prior to the shock's collision with the Earth's magnetopause. The shock, in turn, provides advance warning of the approaching driver gas

    Temperature of the Plasmasphere from Van Allen Probes HOPE

    Get PDF
    We introduce two novel techniques for estimating temperatures of very low energy space plasmas using, primarily, in situ data from an electrostatic analyzer mounted on a charged and moving spacecraft. The techniques are used to estimate proton temperatures during intervals where the bulk of the ion plasma is well below the energy bandpass of the analyzer. Both techniques assume that the plasma may be described by a one-dimensional E→×B→ drifting Maxwellian and that the potential field and motion of the spacecraft may be accounted for in the simplest possible manner, i.e., by a linear shift of coordinates. The first technique involves the application of a constrained theoretical fit to a measured distribution function. The second technique involves the comparison of total and partial-energy number densities. Both techniques are applied to Van Allen Probes Helium, Oxygen, Proton, and Electron (HOPE) observations of the proton component of the plasmasphere during two orbits on 15 January 2013. We find that the temperatures calculated from these two order-of-magnitude-type techniques are in good agreement with typical ranges of the plasmaspheric temperature calculated using retarding potential analyzer-based measurements—generally between 0.2 and 2 eV (2000–20,000 K). We also find that the temperature is correlated with L shell and hot plasma density and is negatively correlated with the cold plasma density. We posit that the latter of these three relationships may be indicative of collisional or wave-driven heating of the plasmasphere in the ring current overlap region. We note that these techniques may be easily applied to similar data sets or used for a variety of purposes

    The Experiment for Space Radiation Analysis: Probing the Earth\u27s Radiation Belts Using a CubeSat Platform

    Get PDF
    The Experiment for Space Radiation Analysis (ESRA) is the latest of a series of Demonstration and Validation missions built by the Los Alamos National Laboratory, with the focus on testing a new generation of plasma and energetic particle sensors. The primary motivation for the ESRA payloads is to minimize size, weight, power, and cost while still providing necessary mission data. These new instruments will be demonstrated by ESRA through testing and on-orbit operations to increase their technology readiness level such that they can support the evolution of technology and mission objectives. This project will leverage a commercial off-the-shelf CubeSat avionics bus and commercial satellite ground networks to reduce the cost and timeline associated with traditional DemVal missions. The system will launch as a ride share with the DoD Space Test Program to be inserted in Geosynchronous Transfer Orbit (GTO) and allow observations of the Earth’s radiation belts. The ESRA CubeSat consists of two science payloads and several subsystems: the Wide-field-of-view Plasma Spectrometer, the Energetic Charged Particle telescope, high voltage power supply, payload processor, flight software architecture, and distributed processor module. The ESRA CubeSat will provide measurements of the plasma and energetic charged particle populations in the GTO environment for ions ranging from ~100 eV to ~1000 MeV and electrons with energy ranging from 100 keV to 20 MeV. ESRA will utilize a commercial 12U bus and demonstrate a low-cost, rapidly deployable spaceflight platform with sufficient SWAP to enable efficient measurements of the energetic particle populations in the dynamic radiation belts

    HelioSwarm: A Multipoint, Multiscale Mission to Characterize Turbulence

    Get PDF
    HelioSwarm (HS) is a NASA Medium-Class Explorer mission of the Heliophysics Division designed to explore the dynamic three-dimensional mechanisms controlling the physics of plasma turbulence, a ubiquitous process occurring in the heliosphere and in plasmas throughout the universe. This will be accomplished by making simultaneous measurements at nine spacecraft with separations spanning magnetohydrodynamic and sub-ion spatial scales in a variety of near-Earth plasmas. In this paper, we describe the scientific background for the HS investigation, the mission goals and objectives, the observatory reference trajectory and instrumentation implementation before the start of Phase B. Through multipoint, multiscale measurements, HS promises to reveal how energy is transferred across scales and boundaries in plasmas throughout the universe

    Prototype Testing Results of Charged Particle Detectors and Critical Subsystems for the ESRA Mission to GTO

    Get PDF
    The Experiment for Space Radiation Analysis (ESRA) is the latest of a series of Demonstration and Validation (DemVal) missions built by the Los Alamos National Laboratory, with the focus on testing a new generation of plasma and energetic paritcle sensors along with critical subsystems. The primary motivation for the ESRA payloads is to minimize size, weight, power, and cost while still providing necessary mission data. These new instruments will be demonstrated by ESRA through ground-based testing and on-orbit operations to increase their technology readiness level such that they can support the evolution of technology and mission objectives. This project will leverage a commercial off-the-shelf CubeSat avionics bus and commercial satellite ground networks to reduce the cost and timeline associated with traditional DemVal missions. The system will launch as a ride share with the DoD Space Test Program to be inserted in Geosynchronous Transfer Orbit (GTO) and allow observations of the Earth\u27s radiation belts. The ESRA CubeSat consists of two science payloads and several subsystems: the Wide field-of-view Plasma Spectrometer, the Energetic Charged Particle telescope, high voltage power supply, payload processor, flight software architecture, and distributed processor module. The ESRA CubeSat will provide measurements of the plasma and energetic charged particle populations in the GTO environment for ions ranging from ~100 eV to ~1000 MeV and electrons with energy ranging from 100 keV to 20 MeV. ESRA will utilize a commercial 12U bus and demonstrate a low-cost, rapidly deployable spaceflight platform with sufficient SWAP to enable efficient measurements of the charged particle populations in the dynamic radiation belts
    corecore