37 research outputs found

    What drives the dust activity of comet 67P/Churyumov-Gerasimenko?

    Full text link
    We use the gravitational instability formation scenario of cometesimals to derive the aggregate size that can be released by the gas pressure from the nucleus of comet 67P/Churyumov-Gerasimenko for different heliocentric distances and different volatile ices. To derive the ejected aggregate sizes, we developed a model based on the assumption that the entire heat absorbed by the surface is consumed by the sublimation process of one volatile species. The calculations were performed for the three most prominent volatile materials in comets, namely, H_20 ice, CO_2 ice, and CO ice. We find that the size range of the dust aggregates able to escape from the nucleus into space widens when the comet approaches the Sun and narrows with increasing heliocentric distance, because the tensile strength of the aggregates decreases with increasing aggregate size. The activity of CO ice in comparison to H_20 ice is capable to detach aggregates smaller by approximately one order of magnitude from the surface. As a result of the higher sublimation rate of CO ice, larger aggregates are additionally able to escape from the gravity field of the nucleus. Our model can explain the large grains (ranging from 2 cm to 1 m in radius) in the inner coma of comet 67P/Churyumov-Gerasimenko that have been observed by the OSIRIS camera at heliocentric distances between 3.4 AU and 3.7 AU. Furthermore, the model predicts the release of decimeter-sized aggregates (trail particles) close to the heliocentric distance at which the gas-driven dust activity vanishes. However, the gas-driven dust activity cannot explain the presence of particles smaller than ~1 mm in the coma because the high tensile strength required to detach these particles from the surface cannot be provided by evaporation of volatile ices. These smaller particles can be produced for instance by spin-up and centrifugal mass loss of ejected larger aggregates

    The Thermal, Mechanical, Structural, and Dielectric Properties of Cometary Nuclei After Rosetta

    Get PDF
    The physical properties of cometary nuclei observed today relate to their complex history and help to constrain their formation and evolution. In this article, we review some of the main physical properties of cometary nuclei and focus in particular on the thermal, mechanical, structural and dielectric properties, emphasising the progress made during the Rosetta mission. Comets have a low density of 480±220 kgm−3 and a low permittivity of 1.9–2.0, consistent with a high porosity of 70–80%, are weak with a very low global tensile strength −1m−2s−1/2 that allowed them to preserve highly volatiles species (e.g. CO, CO2, CH4, N2) into their interior since their formation. As revealed by 67P/Churyumov-Gerasimenko, the above physical properties vary across the nucleus, spatially at its surface but also with depth. The broad picture is that the bulk of the nucleus consists of a weakly bonded, rather homogeneous material that preserved primordial properties under a thin shell of processed material, and possibly covered by a granular material; this cover might in places reach a thickness of several meters. The properties of the top layer (the first meter) are not representative of that of the bulk nucleus. More globally, strong nucleus heterogeneities at a scale of a few meters are ruled out on 67P’s small lobe

    Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko

    Get PDF
    The complex shape of comet 67P and its oblique rotation axis cause pronounced seasonal effects. Irradiation and hence activity vary strongly. Aims. We investigate the insolation of the cometary surface in order to predict the sublimation of water ice. The strongly varying erosion levels are correlated with the topography and morphology of the present cometary surface and its evolution. Methods. The insolation as a function of heliocentric distance and diurnal (spin dependent) variation is calculated using >105 facets of a detailed digital terrain model. Shading, but also illumination and thermal radiation by facets in the field of view of a specific facet are iteratively taken into account. We use a two-layer model of a thin porous dust cover above an icy surface to calculate the water sublimation, presuming steady state and a uniform surface. Our second model, which includes the history of warming and cooling due to thermal inertia, is restricted to a much simpler shape model but allows us to test various distributions of active areas. Results. Sublimation from a dirty ice surface yields maximum erosion. A thin dust cover of 50 ÎŒm yields similar rates at perihelion. Only about 6% of the surface needs to be active to match the observed water production rates at perihelion. A dust layer of 1 mm thickness suppresses the activity by a factor of 4 to 5. Erosion on the south side can reach more than 10 m per orbit at active spots. The energy input to the concave neck area (Hapi) during northern summer is enhanced by about 50% owing to self-illumination. Here surface temperatures reach maximum values along the foot of the Hathor wall. Integrated over the whole orbit this area receives the least energy input. Based on the detailed shape model, the simulations identify "hot spots" in depressions and larger pits in good correlation with observed dust activity. Three-quarters of the total sublimation is produced while the sub-solar latitude is south, resulting in a distinct dichotomy in activity and morphology. Conclusions. The northern areas display a much rougher morphology than what is seen on Imhotep, an area at the equator that will be fully illuminated when 67P is closer to the Sun. Self-illumination in concave regions enhance the energy input and hence erosion. This explains the early activity observed at Hapi. Cliffs are more prone to erosion than horizontal, often dust covered, areas, which leads to surface planation. Local activity can only persist if the forming cliff walls are eroding. Comet 67P has two lobes and also two distinct sides. Transport of material from the south to the north is probable. The morphology of the Imhotep plain should be typical for the terrains of the yet unseen southern hemisphere

    Seasonal mass transfer on the nucleus of comet 67P/Chuyumov-Gerasimenko

    Get PDF
    We collect observational evidence that supports the scheme of mass transfer on the nucleus of comet 67P/Churyumov-Gerasimenko. The obliquity of the rotation axis of 67P causes strong seasonal variations. During perihelion the southern hemisphere is four times more active than the north. Northern territories are widely covered by granular material that indicates back fall originating from the active south. Decimetre sized chunks contain water ice and their trajectories are influenced by an antisolar force instigated by sublimation. OSIRIS observations suggest that up to 20 per cent of the particles directly return to the nucleus surface taking several hours of traveltime. The back fall covered northern areas are active if illuminated but produce mainly water vapour. The decimetre chunks from the nucleus surface are too small to contain more volatile compounds such as CO2 or CO. This causes a north-south dichotomy of the composition measurements in the coma. Active particles are trapped in the gravitational minimum of Hapi during northern winter. They are 'shock frozen' and only re-activated when the comet approaches the sun after its aphelion passage. The insolation of the big cavity is enhanced by self-heating, i.e. reflection and IR radiation from the walls. This, together with the pristinity of the active back fall, explains the early observed activity of the Hapi region. Sobek may be a role model for the consolidated bottom of Hapi. Mass transfer in the case of 67P strongly influences the evolution of the nucleus and the interpretation of coma measurements

    Seasonal mass transfer on the nucleus of comet 67P/Chuyumov–Gerasimenko

    Get PDF
    We collect observational evidence that supports the scheme of mass transfer on the nucleus of comet 67P/Churyumov–Gerasimenko. The obliquity of the rotation axis of 67P causes strong seasonal variations. During perihelion the southern hemisphere is four times more active than the north. Northern territories are widely covered by granular material that indicates back fall originating from the active south. Decimetre sized chunks contain water ice and their trajectories are influenced by an antisolar force instigated by sublimation. OSIRIS observations suggest that up to 20 per cent of the particles directly return to the nucleus surface taking several hours of traveltime. The back fall covered northern areas are active if illuminated but produce mainly water vapour. The decimetre chunks from the nucleus surface are too small to contain more volatile compounds such as CO₂ or CO. This causes a north–south dichotomy of the composition measurements in the coma. Active particles are trapped in the gravitational minimum of Hapi during northern winter. They are ‘shock frozen’ and only re-activated when the comet approaches the sun after its aphelion passage. The insolation of the big cavity is enhanced by self-heating, i.e. reflection and IR radiation from the walls. This, together with the pristinity of the active back fall, explains the early observed activity of the Hapi region. Sobek may be a role model for the consolidated bottom of Hapi. Mass transfer in the case of 67P strongly influences the evolution of the nucleus and the interpretation of coma measurements

    Acceleration of cometary dust near the nucleus: application to 67P/Churyumov-Gerasimenko

    No full text
    We present a model of cometary dust capable of simulating the dynamics within the first few tens of km of the comet surface. Recent measurements by the GIADA and COSIMA instruments on Rosetta show that the nucleus emits fluffy dust particles with porosities above 50% and sizes up to at least mm (Schulz et al. 2015, Rotundi et al. 2015, Fulle et al. 2015). Retrieval of the physical properties of these particles requires a model of the effective forces governing their dynamics. Here, we present a model capable of simulating realistic, large and porous particles using hierarchical aggregates, which shows previous extrapolations to be inadequate. The main strengths of our approach are that we can simulate very large (mm-scale) non-spherical agglomerates and can accurately determine their 1) effective cross-section and ratio of cross-section to mass, 2) gas drag coefficient, and 3) light scattering properties. In practical terms, we find that a more detailed treatment of the dust structure results in 3-5 times higher velocities for large dust particles in the inner coma than previously estimated using spherical particles of the same mass. We apply our model to the dynamics of dust in the vicinity of the nucleus of comet 67P and successfully reproduce the dust speeds reported early on when the comet was roughly 3.5 AU from the Sun. At this stage, we employ a simple spherical comet nucleus, we model activity as constant velocity gas expansion from a uniformly active surface, and use Mie scattering. We discuss pathways to improve on these simplifications in the future.Comment: 9 pages (text), 9 figures, 2 tables, accepted for publication on MNRA

    Dynamics of Dust Particles of Different Structure: Application to the Modeling of Dust Motion in the Vicinity of the Nucleus of Comet 67P/Churyumov–Gerasimenko

    No full text
    We consider the estimates of the main forces acting on dust particles near a cometary nucleus. On the basis of these estimates, the motion of dust particles of different structure and mass is analyzed. We consider the following forces: (1) the cometary nucleus gravity, (2) the solar radiation pressure, and (3) the drag on dust particles by a flow of gas produced in the sublimation of cometary ice. These forces are important for modeling the motion of dust particles relative to the cometary nucleus and may substantially influence the dust transfer over its surface. In the simulations, solid silicate spheres and homogeneous ballistic aggregates are used as model particles. Moreover, we propose a technique to build hierarchic aggregates—a new model of quasi-spherical porous particles. A hierarchic type of aggregates makes it possible to model rather large dust particles, up to a millimeter in size and larger, while no important requirements for computer resources are imposed. We have shown that the properties of such particles differ from those of classical porous ballistic aggregates, which are usually considered in the cometary physics problems, and considering the microscopic structure of particles is of crucial significance for the analysis of the observational data. With the described models, we study the dust dynamics near the nucleus of comet 67P/Churyumov–Gerasimenko at an early stage of the Rosetta probe observations when the comet was approximately at 3.2 AU from the Sun. The interrelations between the main forces acting on dust aggregates at difference distances from the nucleus have been obtained. The dependence of the velocity of dust aggregates on their mass has been found. The numerical modeling results and the data of spaceborne observations with the Grain Impact Analyzer and Dust Accumulator (GIADA) and the Cometary Secondary Ion Mass Analyzer (COSIMA) onboard the Rosetta probe are compared at a quantitative level
    corecore