10 research outputs found

    Inventory Control for a Small Business

    Get PDF
    This paper is an examination of several inventory related problems faced by many small businesses. Specifically the problems addressed are: 1) How can the manager of a small business easily and efficiently track his inventory items in order to determine their individual inventory turnovers? 2) How should the manager judge these individual inventory turnovers? How can he judge the performance of a particular item? 3) How many of a given item should be stocked or ordered at a given time? How should safety stocks be determined? Chapter Two addresses each of these questions giving several alternate solutions developed from the literature pertaining to the subject. These methods are then applied to a particular case in Chapter Three. The case under consideration is a small bookstore located in Minot, North Dakota. This study concludes that the best solution to the inventory problems of the bookstore is a simple manual system. The tracking of items is accomplished via a combination of color coding and tear-tags, the judging of turnovers is based upon breakeven levels, and the ordering of merchandise is based upon a fixed time period model

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Global Spatial Risk Assessment of Sharks Under the Footprint of Fisheries

    Get PDF
    Effective ocean management and conservation of highly migratory species depends on resolving overlap between animal movements and distributions and fishing effort. Yet, this information is lacking at a global scale. Here we show, using a big-data approach combining satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively) and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of high-seas fishing effort. Results demonstrate an urgent need for conservation and management measures at high-seas shark hotspots and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real time, dynamic management

    Diving into the vertical dimension of elasmobranch movement ecology.

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Reply to: Shark mortality cannot be assessed by fishery overlap alone

    No full text
    [Extract] Our previously published paper1 provided global fine-scale spatiotemporal estimates (1° × 1°; monthly) of overlap and fishing exposure risk (FEI) between satellite-tracked shark space use and automatic identification system (AIS) longline fishing effort. We did not assess shark mortality directly, but in addition to replying to the Comment by Murua et al.2, we confirm—using regression analysis of spatially matched data—that fishing-induced pelagic shark mortality (catch per unit effort (CPUE)) is greater where FEI is higher. We focused on assessing shark horizontal spatiotemporal overlap and exposure risk with fisheries because spatial overlap is a major driver of fishing capture susceptibility and previous shark ecological risk assessments (ERAs) assumed a homogenous shark density within species-range distributions3,4,5 or used coarse-scale modelled occurrence data, rather than more ecologically realistic risk estimates in heterogeneous habitats that were selected by sharks over time. Furthermore, our shark spatial exposure risk implicitly accounts for other susceptibility factors with equal or similar probabilities to those commonly used in shark ERAs3,5

    Diving into the vertical dimension of elasmobranch movement ecology

    No full text
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements.</p

    Reply to: Caution over the use of ecological big data for conservation

    No full text
    [Extract] Our global analysis1 estimated the overlap and fishing exposure risk (FEI) using the space use of satellite-tracked sharks and longline fishing effort monitored by the automatic identification system (AIS). In the accompanying Comment, Harry and Braccini2 draw attention to two localized shark–longline vessel overlap hotspots in Australian waters, stating that 47 fishing vessels were misclassified as longline and purse seine vessels in the Global Fishing Watch (GFW)3 2012–2016 AIS fishing effort data product that we used. This, they propose2, results in misidentifications that highlight fishing exposure hotspots that are subject to an unexpected level of sensitivity in the analysis and they suggest that misidentifications could broadly affect the calculations of fishing exposure and the central conclusions of our study1. We acknowledged in our previously published paper1 that gear reclassifications were likely to occur for a small percentage of the more than 70,000 vessels studied, however, here we demonstrate that even using much larger numbers of vessel reclassifications than those proposed by Harry and Braccini2, the central results and conclusions of our paper1 do not change
    corecore