36 research outputs found

    Kysttorsken vår er sterkt truet

    Get PDF
    publishedVersio

    Redox regulation in Atlantic cod (Gadus morhua) embryos developing under normal and heat-stressed conditions

    Get PDF
    With regard to predicted oceanic warming, we studied the effects of heat stress on the redox system during embryonic development of Atlantic cod (Gadus morhua), with emphasis on the glutathione balance, activities of key antioxidant enzymes, and their mRNA levels. The embryos were incubated at optimal temperature for development (6 °C) or slightly above the threshold temperature (10 °C). The regulation of all the redox-related parameters measured at optimum development was highly dynamic and complex, indicating the importance of both maternal and zygotic contributions to maintaining redox equilibrium. Development at 10 °C caused a significantly higher mortality at the blastula and early gastrula stages, indicating severe stress. Measures of the glutathione redox couple showed a significantly more reduced state in embryos at 10 °C compared to 6 °C at the post-gastrula stages. Mean normalized expression of nrf2, trxred, g6pd, gclc, nox1, CuZnsod, and mt in embryos kept at 10 °C revealed stage-specific significantly reduced mRNA levels. Activities of antioxidant enzymes changed both during ontogenesis and in response to temperature, but did not correlate with mRNA levels. As the embryos need a tightly regulated redox environment to coordinate between growth and differentiation, these findings suggest that the altered redox balance might participate in inducing phenotypic changes caused by elevated temperature.publishedVersio

    Earlier or delayed seasonal broodstock spawning changes nutritional status and metabolic programming of growth for next-generation Atlantic salmon

    Get PDF
    Atlantic salmon (Salmo salar) breeding companies depend on changing light, temperature and feeding regimes to achieve new generations outside the natural spawning season. However, there have been few conducted trials reported that have studied whether this shift affects important traits. We test whether an induced shift of two months earlier or two months later than normal spawning season affects the nutritional status (folate, methionine, vitamin B12, vitamin B6, free amino acids, N-metabolites and lipids) in broodstock liver and muscle and whether this affects the levels of the same nutrients in the offspring. The results showed significant seasonal differences in the Cahill cycle (glucose-alanine cycle), 1C metabolism and for free amino acids catabolized in the citric acid cycle all which are important for embryonic growth The broodstock nutritional status was reflected in the eggs. Nutritional status of broodstock liver and muscle and newly fertilized eggs showed two general scenarios: Advanced spawning period did not obtain optimal deposition of nutrients in the eggs. Delayed spawning broodstock displayed a metabolic profile which indicated that it had enhanced catabolization of muscle protein which led to accumulation of aminogroups from muscle breakdown to such a degree that these amino groups were increased in the eggs. The total body weight at start-feeding stage revealed best growth for both the normal and late spawning compared to early spawning. We show here that environmental alterations in broodstock husbandry influence the nutrient status of the next generation via nutritional and metabolic programming. This is an important concept which needs more careful awareness as the metabolism compensate and regulate the energy between catabolism and anabolism through the early stages of cell divisions which give rise to changes in permanent traits for the next generation.publishedVersio

    Associations Between Behavioral Effects of Bisphenol A and DNA Methylation in Zebrafish Embryos

    Get PDF
    Endocrine-disrupting contaminants have been associated with aberrant changes in epigenetic pathways in animals. In this study, zebrafish embryos were exposed bisphenol A (BPA) to search for associations between behavior and epigenetic mechanisms in fish. For concentration-dependent responses, embryos were exposed to a range of BPA concentrations (0.1 nM to 30 μM). Embryos were analyzed for locomotor activity at 3-, 4-, and 5-days post fertilization (dpf) in response to changing light conditions. Based on concentration-dependent effects on behavior and gene expression, 10 μM BPA [from 24 to 96 hours post fertilization (hpf)] was used for a whole-genome bisulfite sequencing (WGBS) study searching for genome-wide impacts on DNA methylation. Over the examined concentration ranges, hyperactivity was demonstrated for exposures to 0.001 μM BPA in comparison to embryos exposed to lower or higher BPA concentrations. Transcriptional analysis showed significant effects at >0.01 μM BPA for two genes related to DNA methylation (dnmt1, cbs). BPA exposure did not significantly affect global DNA methylation, but 20,474 differentially methylated (DM) sites in 4,873 genes were identified by WGBS analysis. Most DM sites were identified within gene bodies. The genes with the most DM sites were all protocadherin 2 gamma subfamily genes, related to axon targeting, synaptic development and neuronal survival. KEGG pathways most significantly affected by BPA exposure were phosphatidylinositol signaling system, followed by VEGF and MAPK signaling pathways. This study shows that BPA can affect zebrafish embryo swimming activity at very low concentrations as well as affecting numerous methylated sites in genes which are overrepresented in functionally relevant metabolic pathways. In conclusion, altered methylation patterns of genes associated with nervous system development might lead to abnormal swimming activity.Associations Between Behavioral Effects of Bisphenol A and DNA Methylation in Zebrafish EmbryospublishedVersio

    Out-of-season spawning affects the nutritional status and gene expression in both Atlantic salmon female broodstock and their offspring

    Get PDF
    The Atlantic salmon aquaculture industry relies on adjustments of female broodstock spawning season to meet the demand for delivery of embryos outside the natural spawning season. Earlier results from zebrafish have shown that parental micronutrient status program offspring metabolism. Therefore, the main hypothesis of this study was to investigate if out-of-season (off-season) broodstock (spawning in June, in land-based recirculation systems) and their offspring deviate in micronutrient status when compared to broodstock and offspring from normal spawning season. Both seasons of female Atlantic salmon broodstock were fed the same diet and starved for approximately the same time interval prior to spawning. We compared nutrients related to the 1C metabolism (vitamin B12, folate, vitamin B6, methionine), free amino acids (FAAs) and lipid classes in broodstock muscle and liver tissues, and during offspring ontogeny. In general, the off-season broodstock showed higher levels of folate, vitamin B6 and selected FAAs in muscle tissue, and higher levels of folate and lipids (cholesterol and sphingomyelin) in liver tissue compared to normal-season. Furthermore, embryos from off-season had reduced amounts of all the measured lipid classes, like cholesterol and sphingomyelin, and lower levels of one type of folate and changes in FAAs and N-metabolites. We discovered significant differences between the seasons in mRNA levels of genes controlling fatty acid synthesis and 1C metabolism in both broodstock liver and offspring. Moreover, for genes controlling the methylation of DNA; both maintenance and de novo DNA methyltransferases (DNMTs) were expressed at higher levels in off-season compared to normal-season offspring. Our results show, in general that normal spawning season broodstock allocated more nutrients to eggs than off-season. Our results indicate a potential for improved maturation for off-season group to obtain a higher offspring growth potential, and this argues for a reassessment of the nutritional influence from broodstock to offspring and the consequences through nutritional programming.publishedVersio

    Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    Get PDF
    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F(0) generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F(1) embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring

    Long-term effect of parental selenium supplementation on the one-carbon metabolism in rainbow trout (Oncorhynchus mykiss) fry exposed to hypoxic stress

    Get PDF
    This study evaluated how different forms of selenium (Se) supplementation into rainbow trout broodstock diets modified the one-carbon metabolism of the progeny after the beginning of exogenous feeding and followed by hypoxia challenge. The progeny of three groups of rainbow trout broodstock fed either a control diet (Se level: 0·3 µg/g) or a diet supplemented with inorganic sodium selenite (Se level: 0·6 µg/g) or organic hydroxy-selenomethionine (Se level: 0·6 µg/g) was cross-fed with diets of similar Se composition for 11 weeks. Offspring were sampled either before or after being subjected to an acute hypoxic stress (1·7 mg/l dissolved oxygen) for 30 min. In normoxic fry, parental Se supplementation allowed higher glutathione levels compared with fry originating from parents fed the control diet. Parental hydroxy-selenomethionine treatment also increased cysteine and cysteinyl–glycine concentrations in fry. Dietary Se supplementation decreased glutamate–cysteine ligase (cgl) mRNA levels. Hydroxy-selenomethionine feeding also lowered the levels of some essential free amino acids in muscle tissue. Supplementation of organic Se to parents and fry reduced betaine-homocysteine S-methyltransferase (bhmt) expression in fry. The hypoxic stress decreased whole-body homocysteine, cysteine, cysteinyl-glycine and glutathione levels. Together with the higher mRNA levels of cystathionine beta-synthase (cbs), a transsulphuration enzyme, this suggests that under hypoxia, glutathione synthesis through transsulphuration might have been impaired by depletion of a glutathione precursor. In stressed fry, S-adenosylmethionine levels were significantly decreased, but S-adenosylhomocysteine remained stable. Decreased bhmt and adenosylmethionine decarboxylase 1a (amd1a) mRNA levels in stressed fry suggest a nutritional programming by parental Se also on methionine metabolism of rainbow trout.publishedVersio

    Metabolic and molecular signatures of improved growth in Atlantic salmon (Salmo salar) fed surplus levels of methionine, folic acid, vitamin B6 and B12 throughout smoltification.

    Get PDF
    A moderate surplus of the 1C nutrients methionine, folic acid, vitamin B6 and B12 above dietary recommendations for Atlantic salmon has shown to improve growth and reduce hepatosomatic index in the on-growing salt water period when fed throughout smoltification. Metabolic properties and molecular mechanisms determining the improved growth are unexplored. Here, we investigate metabolic and transcriptional signatures in skeletal muscle taken before and after smoltification to acquire deeper insight into pathways and possible nutrient-gene-interactions. A control feed (Ctrl) or 1C nutrient surplus feed (1C+) were fed to Atlantic salmon six weeks prior to smoltification until three months after salt water transfer. Both metabolic and gene expression signatures revealed significant 1C nutrient-dependent changes already at pre-smolt, but differences intensified when analysing post-smolt muscle. Transcriptional differences revealed a lower expression of genes related to translation, growth, and amino acid metabolization in post-smolt muscle when fed additional 1C nutrients. The 1C+ group showed less free amino acid and putrescine levels, and higher methionine and glutathione (GSH) amounts in muscle. For Ctrl muscle, the overall metabolic profile suggests a lower amino acid utilization for protein synthesis, and increased methionine metabolization in polyamine and redox homeostasis, whereas transcription changes are indicative of compensatory growth regulation at local tissue level. These findings point to fine-tuned nutrient-gene-interactions fundamental for improved growth capacity through better amino acid utilization for protein accretion when salmon was fed additional 1C nutrients throughout smoltification. It also highlights potential nutritional programming strategies on improved post-smolt growth through 1C+ supplementation before and throughout smoltification.acceptedVersio

    Parental selenium nutrition affects the one-carbon metabolism and the hepatic dna methylation pattern of rainbow trout (Oncorhynchus mykiss) in the progeny

    Get PDF
    Selenium is an essential micronutrient and its metabolism is closely linked to the methionine cycle and transsulfuration pathway. The present study evaluated the effect of two different selenium supplements in the diet of rainbow trout (Onchorhynchus mykiss) broodstock on the one-carbon metabolism and the hepatic DNA methylation pattern in the progeny. Offspring of three parental groups of rainbow trout, fed either a control diet (NC, basal Se level: 0.3 mg/kg) or a diet supplemented with sodium selenite (SS, 0.8 mg Se/kg) or hydroxy-selenomethionine (SO, 0.7 mg Se/kg), were collected at swim-up fry stage. Our findings suggest that parental selenium nutrition impacted the methionine cycle with lower free methionine and S-adenosylmethionine (SAM) and higher methionine synthase (mtr) mRNA levels in both selenium-supplemented treatments. DNA methylation profiling by reduced representation bisulfite sequencing (RRBS) identified differentially methylated cytosines (DMCs) in offspring livers. These DMCs were related to 6535 differentially methylated genes in SS:NC, 6890 in SO:NC and 7428 in SO:SS, respectively. Genes with the highest methylation difference relate, among others, to the neuronal or signal transmitting and immune system which represent potential targets for future studies.publishedVersio

    Parental micronutrient deficiency distorts liver DNA methylation and expression of lipid genes associated with a fatty-liver-like phenotype in offspring

    Get PDF
    Micronutrient status of parents can affect long term health of their progeny. Around 2 billion humans are affected by chronic micronutrient deficiency. In this study we use zebrafish as a model system to examine morphological, molecular and epigenetic changes in mature offspring of parents that experienced a one-carbon (1-C) micronutrient deficiency. Zebrafish were fed a diet sufficient, or marginally deficient in 1-C nutrients (folate, vitamin B12, vitamin B6, methionine, choline), and then mated. Offspring livers underwent histological examination, RNA sequencing and genome-wide DNA methylation analysis. Parental 1-C micronutrient deficiency resulted in increased lipid inclusion and we identified 686 differentially expressed genes in offspring liver, the majority of which were downregulated. Downregulated genes were enriched for functional categories related to sterol, steroid and lipid biosynthesis, as well as mitochondrial protein synthesis. Differential DNA methylation was found at 2869 CpG sites, enriched in promoter regions and permutation analyses confirmed the association with parental feed. Our data indicate that parental 1-C nutrient status can persist as locus specific DNA methylation marks in descendants and suggest an effect on lipid utilization and mitochondrial protein translation in F1 livers. This points toward parental micronutrients status as an important factor for offspring health and welfare.publishedVersio
    corecore