21 research outputs found

    Deconstructing the Veneer of Simplicity: Co-Designing Introductory Generative AI Workshops with Local Entrepreneurs

    Full text link
    Generative AI platforms and features are permeating many aspects of work. Entrepreneurs from lean economies in particular are well positioned to outsource tasks to generative AI given limited resources. In this paper, we work to address a growing disparity in use of these technologies by building on a four-year partnership with a local entrepreneurial hub dedicated to equity in tech and entrepreneurship. Together, we co-designed an interactive workshops series aimed to onboard local entrepreneurs to generative AI platforms. Alongside four community-driven and iterative workshops with entrepreneurs across five months, we conducted interviews with 15 local entrepreneurs and community providers. We detail the importance of communal and supportive exposure to generative AI tools for local entrepreneurs, scaffolding actionable use (and supporting non-use), demystifying generative AI technologies by emphasizing entrepreneurial power, while simultaneously deconstructing the veneer of simplicity to address the many operational skills needed for successful application

    30-year International Pediatric Craniofacial Surgery Partnership : evolution from the "Third World" forward

    Get PDF
    BACKGROUND: Craniofacial diseases constitute an important component of the surgical disease burden in low- and middle-income countries. The consideration to introduce craniofacial surgery into such settings poses different questions, risks, and challenges compared with cleft or other forms of plastic surgery. We report the evolution, innovations, and challenges of a 30-year international craniofacial surgery partnership. METHODS: We retrospectively report a partnership between surgeons at the Uniwersytecki Szpital Dzieciecy in Krakow, Poland, and a North American craniofacial surgeon. We studied patient conditions, treatment patterns, and associated complications, as well as program advancements and limitations as perceived by surgeons, patient families, and hospital administrators. RESULTS: Since partnership inception in 1986, the complexity of cases performed increased gradually, with the first intracranial case performed in 1995. In the most recent 10-year period (2006–2015), 85 patients have been evaluated, with most common diagnoses of Apert syndrome, Crouzon syndrome, and single-suture craniosynostosis. In the same period, 55 major surgical procedures have been undertaken, with LeFort III midface distraction, posterior vault distraction, and frontoorbital advancement performed most frequently. Key innovations have been the employment of craniofacial distraction osteogenesis, the use of Internet communication and digital photography, and increased understanding of how craniofacial morphology may improve in the absence of surgical intervention. Ongoing challenges include prohibitive training pathways for pediatric plastic surgeons, difficulty in coordinating care with surgeons in other institutions, and limited medical and material resources. CONCLUSION: Safe craniofacial surgery can be introduced and sustained in a resource-limited setting through an international partnership

    At the poles across kingdoms: phosphoinositides and polar tip growth

    Full text link

    BARREN INFLORESCENCE2 Interaction with ZmPIN1a Suggests a Role in Auxin Transport During Maize Inflorescence Development

    No full text
    Polar auxin transport, mediated by the PIN-FORMED (PIN) class of auxin efflux carriers, controls organ initiation in plants. In maize, BARREN INFLORESCENCE2 (BIF2) encodes a serine/threonine protein kinase co-orthologous to PINOID (PID), which regulates the subcellular localization of AtPIN1in Arabidopsis. We show that BIF2 phosphorylates ZmPIN1a, a maize homolog of AtPIN1, in vitro and regulates ZmPIN1a subcellular localization in vivo, similar to the role of PID in Arabidopsis. In addition, bif2 mutant inflorescences have lower auxin levels later in development. We propose that BIF2 regulates auxin transport through direct regulation of ZmPIN1a during maize inflorescence development

    A Superfamily of Actin-Binding Proteins at the Actin-Membrane Nexus of Higher Plants

    No full text
    Complex animals use a wide variety of adaptor proteins to produce specialized sites of interaction between actin and membranes. Plants do not have these protein families, yet actin-membrane interactions within plant cells are critical for the positioning of subcellular compartments, for coordinating intercellular communication, and for membrane deformation [1]. Novel factors are therefore likely to provide interfaces at actin-membrane contacts in plants, but their identity has remained obscure. Here we identify the plantspecific Networked (NET) superfamily of actin-binding proteins, members of which localize to the actin cytoskeleton and specify different membrane compartments. The founding member of the NET superfamily, NET1A, is anchored at the plasma membrane and predominates at cell junctions, the plasmodesmata. NET1A binds directly to actin filaments via a novel actin-binding domain that defines a superfamily of thirteen Arabidopsis proteins divided into four distinct phylogenetic clades. Members of other clades identify interactions at the tonoplast, nuclear membrane, and pollen tube plasma membrane, emphasizing the role of this superfamily in mediating actin-membrane interactions.</p
    corecore