237 research outputs found

    Genomic architecture, gene regulation and human diseases

    Get PDF
    Resumen del trabajo presentado al IX Meeting of the Spanish Society for Developmental Biology celebrado en Granada del 12 al 14 de noviembre de 2012.Peer Reviewe

    Sox21a is requiered for posterior lateral line patterning by regulating Fgf signalling

    Get PDF
    Resumen del pĂłster presentado al IX Meeting of the Spanish Society for Developmental Biology celebrado en Granada del 12 al 14 de noviembre de 2012.Peer Reviewe

    Engineered Salmonella allows real-time heterologous gene expression monitoring within infected zebrafish embryos

    Get PDF
    Short communication.Microbial host–pathogen interactions have been traditionally well studied at genetic and physiological levels, but cell-resolution analyses have been particularly scarce. This has been especially remarkable for intracellular parasites for two major reasons: first, the inherent loss of bacteria traceability once infects its hosts; second and more important, the limited availability of genetic tools that allow a tight regulated expression of bacterial virulence genes once inside the host tissues. Here we present novel data supporting the use of zebrafish embryos to monitor Salmonella enterica serovar Thyphimurium infection. Intravenous infection of Salmonella can be easily monitored using in vivo fluorescence that allows the visualization of free-swimming bacteria through the circulatory system. Moreover, we have engineered Salmonella to voluntarily activate heterologous gene expression at any point during infection once inside the zebrafish macrophages using a salicylate-based expression system. This approach allows real-time cell-resolution in vivo monitoring of the infection. All together, this approach paves the road to cell-based resolution experiments that would be harder to mimic in other vertebrate infection models.his work was funded by grants BFU2010-14839, CSD2007-00008, CSD2007-00005 and Proyectos de Excelencia CVI-3488 and P07-CVI-02518 from the Spanish and Andalusian Governments, respectively. Jose Luis Royo holds a JAE DOC contract from the Spanish National Research Council (CSIC).Peer reviewe

    Silencing of Smed-βcatenin1 generates radial-like hypercephalized planarians

    Get PDF
    7 páginas, 4 figuras. Supplementary material for this article is available at http://dev.biologists.org/cgi/content/full/135/7/1215/DC1Little is known about the molecular mechanisms responsible for axis establishment during non-embryonic processes such as regeneration and homeostasis. To address this issue, we set out to analyze the role of the canonical Wnt pathway in planarians, flatworms renowned for their extraordinary morphological plasticity. Canonical Wnt signalling is an evolutionarily conserved mechanism to confer polarity during embryonic development, specifying the anteroposterior (AP) axis in most bilaterians and the dorsoventral (DV) axis in early vertebrate embryos. β-Catenin is a key element in this pathway, although it is a bifunctional protein that is also involved in cell-cell adhesion. Here, we report the characterization of two β-catenin homologs from Schmidtea mediterranea (Smed-βcatenin1/2). Loss of function of Smed-βcatenin1, but not Smed-βcatenin2, in both regenerating and intact planarians, generates radial-like hypercephalized planarians in which the AP axis disappears but the DV axis remains unaffected, representing a unique example of a striking body symmetry transformation. The radial-like hypercephalized phenotype demonstrates the requirement for Smed-βcatenin1 in AP axis re-establishment and maintenance, and supports a conserved role for canonical Wnt signalling in AP axis specification, whereas the role of β-catenin in DV axis establishment would be a vertebrate innovation. When considered alongside the protein domains present in each S. mediterranea β-catenin and the results of functional assays in Xenopus embryos demonstrating nuclear accumulation and axis induction with Smed-βcatenin1, but not Smed-βcatenin2, these data suggest that S. mediterraneaβ -catenins could be functionally specialized and that only Smed-βcatenin1 is involved in Wnt signalling.This work was supported by grants from the Ministerio de Educación y Ciencia, Spain, from AGAUR (Generalitat de Catalunya, Spain), and from La Junta de Andalucía, Spain.Peer reviewe

    Regulatory landscape of the vertebrate six2/six3 locus

    Get PDF
    Resumen del pĂłster presentado al IX Meeting of the Spanish Society for Developmental Biology celebrado en Granada del 12 al 14 de noviembre de 2012.Peer Reviewe

    Identification and Analysis of Conserved cis-Regulatory Regions of the MEIS1 Gene

    Get PDF
    Meis1, a conserved transcription factor of the TALE-homeodomain class, is expressed in a wide variety of tissues during development. Its complex expression pattern is likely to be controlled by an equally complex regulatory landscape. Here we have scanned the Meis1 locus for regulatory elements and found 13 non-coding regions, highly conserved between humans and teleost fishes, that have enhancer activity in stable transgenic zebrafish lines. All these regions are syntenic in most vertebrates. The composite expression of all these enhancer elements recapitulate most of Meis1 expression during early embryogenesis, indicating they comprise a basic set of regulatory elements of the Meis1 gene. Using bioinformatic tools, we identify a number of potential binding sites for transcription factors that are compatible with the regulation of these enhancers. Specifically, HHc2:066650, which is expressed in the developing retina and optic tectum, harbors several predicted Pax6 sites. Biochemical, functional and transgenic assays indicate that pax6 genes directly regulate HHc2:066650 activity.This work was funded through grants BFU2009-07044 (MICINN) and Proyecto de Excelencia CVI 2658 (Junta de AndalucĂ­a) to FC and BFU2010-14839 (MICINN), CSD2007-00008 and Proyecto de Excelencia CVI-3488 to JLGS. JLR is a recipient of a JAE-DOC contract from the Spanish National Research Council (CSIC)

    Temporal lack of DNA methylation-mediated repression is a universal feature of vertebrate development

    Get PDF
    Resumen del pĂłster presentado al IX Meeting of the Spanish Society for Developmental Biology celebrado en Granada del 12 al 14 de noviembre de 2012.-- et al.Peer Reviewe

    Long-range regulatory interactions at the 4q25 atrial fibrillation risk locus involve PITX2c and ENPEP

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License.-- et al.[Background]: Recent genome-wide association studies have uncovered genomic loci that underlie an increased risk for atrial fibrillation, the major cardiac arrhythmia in humans. The most significant locus is located in a gene desert at 4q25, approximately 170 kilobases upstream of PITX2, which codes for a transcription factor involved in embryonic left-right asymmetry and cardiac development. However, how this genomic region functionally and structurally relates to PITX2 and atrial fibrillation is unknown. [Results]: To characterise its function, we tested genomic fragments from 4q25 for transcriptional activity in a mouse atrial cardiomyocyte cell line and in transgenic mouse embryos, identifying a non-tissue-specific potentiator regulatory element. Chromosome conformation capture revealed that this region physically interacts with the promoter of the cardiac specific isoform of Pitx2. Surprisingly, this regulatory region also interacts with the promoter of the next neighbouring gene, Enpep, which we show to be expressed in regions of the developing mouse heart essential for cardiac electrical activity. [Conclusions]: Our data suggest that de-regulation of both PITX2 and ENPEP could contribute to an increased risk of atrial fibrillation in carriers of disease-associated variants, and show the challenges that we face in the functional analysis of genome-wide disease associations.This study was funded by the CNIC Translational Grant Programme (CNIC-08-2009 to MM and DF), the Spanish Ministerio de Economia y Competitividad (grants BFU2011-23083 to MM, BFU2013-41322-P to JLGS, BFU2012-38111 to AA, and CSD2007-00008 to JLGS and MM), the Comunidad AutĂłnoma de Madrid (grant CELLDD-CM to MM), and the Andalusian Government (grant BIO-396 to JLGS). The CNIC is supported by the Spanish Ministerio de Economia y Competitividad and the Pro-CNIC Foundation.Peer Reviewe

    Restless Legs Syndrome-associated intronic common variant in Meis1 alters enhancer function in the developing telencephalon

    Get PDF
    This article, published in Genome Research, is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported).-- et al.Genome-wide association studies (GWAS) identified the MEIS1 locus for Restless Legs Syndrome (RLS), but causal single nucleotide polymorphisms (SNPs) and their functional relevance remain unknown. This locus contains a large number of highly conserved noncoding regions (HCNRs) potentially functioning as cis-regulatory modules. We analyzed these HCNRs for allele-dependent enhancer activity in zebrafish and mice and found that the risk allele of the lead SNP rs12469063 reduces enhancer activity in the Meis1 expression domain of the murine embryonic ganglionic eminences (GE). CREB1 binds this enhancer and rs12469063 affects its binding in vitro. In addition, MEIS1 target genes suggest a role in the specification of neuronal progenitors in the GE, and heterozygous Meis1-deficient mice exhibit hyperactivity, resembling the RLS phenotype. Thus, in vivo and in vitro analysis of a common SNP with small effect size showed allele-dependent function in the prospective basal ganglia representing the first neurodevelopmental region implicated in RLS.The project was supported by Fritz-Thyssen-Stiftung, Cologne, Germany (10.09.2.146; 10.12.2.183), KKF-TUM (8766156), DAAD (0811963), and COST (“HOX and TALE homeoproteins in Development and Disease”). B.S. was partially supported by DFG grants (WI 1820/4-1; WI 1820/5-1) and a TUM-Excellence stipend. The KORA study was financed by the Helmholtz Zentrum München, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. KORA research was supported within the Munich Center of Health Sciences (MC Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ. J.L.G.-S. and F.C. acknowledge funding of the Spanish and the Andalusian Governments and the Feder program for grants (BFU2010-14839, BFU2009-07044, CSD2007-00008, and Proyectos de Excelencia CVI-3488 and CVI 2658). This work was funded in part by a grant from the German Federal Ministry of Education and Research (BMBF) to the German Center for Diabetes Research (DZD), to the German Mouse Clinic (Infrafrontier: 01KX1012), to the German Center for Neurodegenerative Diseases (DZNE), Germany; by the Initiative and Networking Fund of the Helmholtz Association in the framework of the Helmholtz Alliance for Mental Research in an Ageing Society (HA-215); and the Munich Cluster for Systems Neurology (EXC 1010 SyNergy) and its Collaborative Research Center (CRC) 870/2 “Assembly and Function of Neuronal Circuits.”Peer Reviewe

    TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors

    Get PDF
    PMCID: PMC4434585.-- et al.The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic-stem-cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signalling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signalling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role for TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas.The research was supported by the National Institute for Health Research (NIHR) Imperial Biomedical Research Centre. Work was funded by grants from the Ministerio de Economía y Competitividad (CB07/08/0021, SAF2011-27086, PLE2009-0162 to J.F., BFU2013-41322-P to J.L.G-S.), the Andalusian Government (BIO-396 to J.L.G-S.), the Wellcome Trust (WT088566 and WT097820 to N.A.H., WT101033 to J.F.), the Manchester Biomedical Research Centre, ERC advanced starting grant IMDs (C.H-H.C. and L.V.) and the Cambridge Hospitals National Institute for Health Research Biomedical Research Centre (L.V.). R.E.J. is a Medical Research Council clinical training fellow. The authors are grateful to C. Wright (Vanderbilt University) for zebrafish Pdx1 antiserum, J. Postlethwait (Purdue University) for a Sox9b clone, H. Sasaki (Kumamoto University) for a TEAD–EnR clone, C. Vinod and L. Abi for research nurse assistance, and clinical colleagues at Central Manchester University Hospitals NHS Foundation Trust. The authors thank J. Garcia-Hurtado for technical assistance (IDIBAPS).Peer Reviewe
    • …
    corecore