28 research outputs found

    Inhibition of mitochondrial respiration prevents BRAF-mutant melanoma brain metastasis

    Get PDF
    Melanoma patients carry a high risk of developing brain metastases, and improvements in survival are still measured in weeks or months. Durable disease control within the brain is impeded by poor drug penetration across the blood-brain barrier, as well as intrinsic and acquired drug resistance. Augmented mitochondrial respiration is a key resistance mechanism in BRAF-mutant melanomas but, as we show in this study, this dependence on mitochondrial respiration may also be exploited therapeutically. We first used high-throughput pharmacogenomic profiling to identify potentially repurposable compounds against BRAF-mutant melanoma brain metastases. One of the compounds identified was β-sitosterol, a well-tolerated and brain-penetrable phytosterol. Here we show that β-sitosterol attenuates melanoma cell growth in vitro and also inhibits brain metastasis formation in vivo. Functional analyses indicated that the therapeutic potential of β-sitosterol was linked to mitochondrial interference. Mechanistically, β-sitosterol effectively reduced mitochondrial respiratory capacity, mediated by an inhibition of mitochondrial complex I. The net result of this action was increased oxidative stress that led to apoptosis. This effect was only seen in tumor cells, and not in normal cells. Large-scale analyses of human melanoma brain metastases indicated a significant role of mitochondrial complex I compared to brain metastases from other cancers. Finally, we observed completely abrogated BRAF inhibitor resistance when vemurafenib was combined with either β-sitosterol or a functional knockdown of mitochondrial complex I. In conclusion, based on its favorable tolerability, excellent brain bioavailability, and capacity to inhibit mitochondrial respiration, β-sitosterol represents a promising adjuvant to BRAF inhibitor therapy in patients with, or at risk for, melanoma brain metastases.publishedVersio

    The Piwil1 N domain is required for germ cell survival in Atlantic salmon

    Get PDF
    Genetic introgression of farmed salmon into wild populations can damage the genetic integrity of wild stocks and is therefore considered as an environmental threat. One possible solution is to induce sterility in farmed salmon. We have searched for proteins potentially essential for germline survival in Atlantic salmon. One of these is the argonaute protein Piwil1, known to be required for germ cell survival. To examine Piwil1 function in salmon, we induced indels in the N domain by CRISPR-Cas9. The encoded domain is present in all vertebrate Piwi proteins and has been linked to Tdrd1 protein interaction and PAZ lobe structure. The F0 founder generation of piwil1 crispant males and females displayed a mosaic pattern of piwil1 mutations, exhibiting highly mutated alleles (53%-97%) in their fin gDNA samples. In general, piwil1 crispants carried germ cells, went through puberty and became fertile, although a transient and partial germ cell loss and delays during the spermatogenic process were observed in many male crispants, suggesting that Piwil1 functions during salmon spermatogenesis. By crossing highly mutated F0 founders, we produced F1 fish with a mixture of: loss-of-function alleles (-); functional in frame mutated alleles ( + ) and wt alleles (+). In F1, all piwil1 -/- fish lacked germ cells, while piwil1 +/+ siblings showed normal ovaries and testes. Yet, most juvenile F1 piwil1 +/-males and females displayed an intermediate phenotype with a higher somatic/germ cell ratio without an increase in germ cell apoptosis, suggestive of a gene dose effect on the number of germ cells and/or insufficient replacement of lost germ cells in heterozygous fish. Interestingly, the two longest in-frame indels in the N domain also ensured germ cell loss. Hence, the loss of 4-6 aa in this region Phe130-Ser136 may result in crucial changes of the protein structure, potentially affecting piRNA binding of the PAZ lobe, and/or affecting the binding of Piwil1 interacting proteins such as Tdrd protein, with critical consequences for the survival of primordial germ cells. In conclusion, we show that loss of piwil1 leads to loss of germ cells in salmon and that part of the N domain of Piwil1 is crucial for its function

    Neuronal markers are expressed in human gliomas and NSE knockdown sensitizes glioblastoma cells to radiotherapy and temozolomide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Expression of neuronal elements has been identified in various glial tumors, and glioblastomas (GBMs) with neuronal differentiation patterns have reportedly been associated with longer survival. However, the neuronal class III β-tubulin has been linked to increasing malignancy in astrocytomas. Thus, the significance of neuronal markers in gliomas is not established.</p> <p>Methods</p> <p>The expressions of class III β-tubulin, neurofilament protein (NFP), microtubule-associated protein 2 (MAP2) and neuron-specific enolase (NSE) were investigated in five GBM cell lines and two GBM biopsies with immunocytochemistry and Western blot. Moreover, the expression levels were quantified by real-time qPCR under different culture conditions. Following NSE siRNA treatment we used Electric cell-substrate impedance sensing (ECIS) to monitor cell growth and migration and MTS assays to study viability after irradiation and temozolomide treatment. Finally, we quantitated NSE expression in a series of human glioma biopsies with immunohistochemistry using a morphometry software, and collected survival data for the corresponding patients. The biopsies were then grouped according to expression in two halves which were compared by survival analysis.</p> <p>Results</p> <p>Immunocytochemistry and Western blotting showed that all markers except NFP were expressed both in GBM cell lines and biopsies. Notably, qPCR demonstrated that NSE was upregulated in cellular stress conditions, such as serum-starvation and hypoxia, while we found no uniform pattern for the other markers. NSE knockdown reduced the migration of glioma cells, sensitized them to hypoxia, radio- and chemotherapy. Furthermore, we found that GBM patients in the group with the highest NSE expression lived significantly shorter than patients in the low-expression group.</p> <p>Conclusions</p> <p>Neuronal markers are aberrantly expressed in human GBMs, and NSE is consistently upregulated in different cellular stress conditions. Knockdown of NSE reduces the migration of GBM cells and sensitizes them to hypoxia, radiotherapy and chemotherapy. In addition, GBM patients with high NSE expression had significantly shorter survival than patients with low NSE expression. Collectively, these data suggest a role for NSE in the adaption to cellular stress, such as during treatment.</p

    Targeting the NG2/CSPG4 Proteoglycan Retards Tumour Growth and Angiogenesis in Preclinical Models of GBM and Melanoma

    Get PDF
    Aberrant expression of the progenitor marker Neuron-glia 2 (NG2/CSPG4) or melanoma proteoglycan on cancer cells and angiogenic vasculature is associated with an aggressive disease course in several malignancies including glioblastoma multiforme (GBM) and melanoma. Thus, we investigated the mechanism of NG2 mediated malignant progression and its potential as a therapeutic target in clinically relevant GBM and melanoma animal models. Xenografting NG2 overexpressing GBM cell lines resulted in increased growth rate, angiogenesis and vascular permeability compared to control, NG2 negative tumours. The effect of abrogating NG2 function was investigated after intracerebral delivery of lentivirally encoded shRNAs targeting NG2 in patient GBM xenografts as well as in established subcutaneous A375 melanoma tumours. NG2 knockdown reduced melanoma proliferation and increased apoptosis and necrosis. Targeting NG2 in two heterogeneous GBM xenografts significantly reduced tumour growth and oedema levels, angiogenesis and normalised vascular function. Vascular normalisation resulted in increased tumour invasion and decreased apoptosis and necrosis. We conclude that NG2 promotes tumour progression by multiple mechanisms and represents an amenable target for cancer molecular therapy

    Full production cycle performance of gene-edited, sterile Atlantic salmon - growth, smoltification, welfare indicators and fillet composition

    Get PDF
    Using germ cell-free (GCF), sterile, dnd-knockout salmon for farming could solve the problems associated with precocious maturation and genetic introgression of farmed breeds into wild populations. However, prior to using GCF fish in the salmon farming industry, it is crucial to understand if, or how, the GCF phenotype differs from wild type (WT) counterparts in terms of growth and welfare. To characterize the GCF phenotype throughout a production cycle, we reared GCF and WT salmon in indoor common garden tanks for 3 years, until harvest size. Regarding body size, smoltification markers (mRNA levels of gill Na+/K+-ATPase [NKA] subunits), plasma stress indicators (pH, glucose, sodium, chloride, calcium), relative heart size, prevalence of vertebra deformities and fillet proximate composition, GCF fish could not be distinguished from WTs. Transient differences were detected in plasma concentrations of lactate and osmolality, and only a few genes were differentially expressed in WT and GCF transcriptomes of muscle and pituitary. At harvest, fillets from GCF and WT salmon contained the same amount of omega-3 fatty acids, however the relative content of omega-3 fatty acids was higher in GCF compared to WT males. Towards harvest size, body growth rate, condition factor and relative liver size were significantly higher in WT than in GCF fish, probably relating to initiation of puberty in WTs. Since GCF salmon never become sexually mature, it is possible to postpone the time of harvest to exploit the growth potential uninhibited by sexual maturation. In conclusion, GCF salmon performed to a large extent similarly to their WT counterparts but had the clear advantage of never maturing

    NUMB does not impair growth and differentiation status of experimental gliomas

    No full text
    © 2011 Elsevier Inc. All rights reserved

    Integrative testis transcriptome analysis reveals differentially expressed miRNAs and their mRNA targets during early puberty in Atlantic salmon

    Get PDF
    Abstract Background Our understanding of the molecular mechanisms implementing pubertal maturation of the testis in vertebrates is incomplete. This topic is relevant in Atlantic salmon aquaculture, since precocious male puberty negatively impacts animal welfare and growth. We hypothesize that certain miRNAs modulate mRNAs relevant for the initiation of puberty. To explore which miRNAs regulate mRNAs during initiation of puberty in salmon, we performed an integrated transcriptome analysis (miRNA and mRNA-seq) of salmon testis at three stages of development: an immature, long-term quiescent stage, a prepubertal stage just before, and a pubertal stage just after the onset of single cell proliferation activity in the testis. Results Differentially expressed miRNAs clustered into 5 distinct expression profiles related to the immature, prepubertal and pubertal salmon testis. Potential mRNA targets of these miRNAs were predicted with miRmap and filtered for mRNAs displaying negatively correlated expression patterns. In summary, this analysis revealed miRNAs previously known to be regulated in immature vertebrate testis (miR-101, miR-137, miR-92b, miR-18a, miR-20a), but also miRNAs first reported here as regulated in the testis (miR-new289, miR-30c, miR-724, miR-26b, miR-new271, miR-217, miR-216a, miR-135a, miR-new194 and the novel predicted n268). By KEGG enrichment analysis, progesterone signaling and cell cycle pathway genes were found regulated by these differentially expressed miRNAs. During the transition into puberty we found differential expression of miRNAs previously associated (let7a/b/c), or newly associated (miR-15c, miR-2184, miR-145 and the novel predicted n7a and b) with this stage. KEGG enrichment analysis revealed that mRNAs of the Wnt, Hedgehog and Apelin signaling pathways were potential regulated targets during the transition into puberty. Likewise, several regulated miRNAs in the pubertal stage had earlier been associated (miR-20a, miR-25, miR-181a, miR-202, let7c/d/a, miR-125b, miR-222a/b, miR-190a) or have now been found connected (miR-2188, miR-144, miR-731, miR-8157 and the novel n2) to the initiation of puberty. Conclusions This study has - for the first time - linked testis maturation to specific miRNAs and their inversely correlated expressed targets in Atlantic salmon. The study indicates a broad functional conservation of already known miRNAs and associated pathways involved in the transition into puberty in vertebrates. The analysis also reveals miRNAs not previously associated with testis tissue or its maturation, which calls for further functional studies in the testis
    corecore