32 research outputs found
miRNA-mRNA-protein dysregulated network in COPD in women
Rationale: Chronic obstructive pulmonary disease (COPD) is a complex disease caused by a multitude of underlying mechanisms, and molecular mechanistic modeling of COPD, especially at a multi-molecular level, is needed to facilitate the development of molecular diagnostic and prognostic tools and efficacious treatments.Objectives: To investigate the miRNA-mRNA-protein dysregulated network to facilitate prediction of biomarkers and disease subnetwork in COPD in women.Measurements and Results: Three omics data blocks (mRNA, miRNA, and protein) collected from BAL cells from female current-smoker COPD patients, smokers with normal lung function, and healthy never-smokers were integrated with miRNA-mRNA-protein regulatory networks to construct a COPD-specific dysregulated network. Furthermore, downstream network topology, literature annotation, and functional enrichment analysis identified both known and novel disease-related biomarkers and pathways. Both abnormal regulations in miRNA-induced mRNA transcription and protein translation repression play roles in COPD. Finally, the let-7-AIFM1-FKBP1A pathway is highlighted in COPD pathology.Conclusion: For the first time, a comprehensive miRNA-mRNA-protein dysregulated network of primary immune cells from the lung related to COPD in females was constructed to elucidate specific biomarkers and disease pathways. The multi-omics network provides a new molecular insight from a multi-molecular aspect and highlights dysregulated interactions. The highlighted let-7-AIFM1-FKBP1A pathway also indicates new hypotheses of COPD pathology.Peer reviewe
Outcomes of patients with advanced idiopathic pulmonary fibrosis treated with nintedanib or pirfenidone in a real-world multicentre cohort
Background and objective Antifibrotic therapy with nintedanib or pirfenidone slows disease progression and reduces mortality in patients with idiopathic pulmonary fibrosis (IPF). However, patients with advanced IPF, as defined by forced vital capacity (FVC) < 50% and/or diffusion capacity for carbon monoxide (DLCO) < 30% of predicted, have not been included in randomized trials, and the outcomes of such patients who initiate treatment are not well understood. We determined lung function, disease progression and mortality outcomes following initiation of antifibrotic therapy in patients with advanced IPF at the time of treatment initiation compared to those with mild-moderate IPF. Methods We included 502 patients enrolled in IPF registries from four Nordic countries. Linear mixed models were used to assess change in FVC and DLCO over time. Cox proportional hazards models were used to assess transplant-free survival and progression- and transplant-free survival. Results Of 502 patients, 66 (13%) had advanced IPF. Annual change in FVC was -125 ml (95% CI -163, -87) among patients with mild-moderate IPF, and +28 ml (95% CI -96, +152) among those with advanced IPF. Advanced IPF at treatment initiation was associated with poorer transplant-free survival (hazard ratio [HR] 2.39 [95% CI 1.66, 3.43]) and progression- and transplant-free survival (HR 1.60 [95% CI 1.15, 2.23]). Conclusion In a broadly representative IPF population, patients with advanced IPF at the initiation of antifibrotic therapy did not have greater lung function decline over time compared with those with mild-moderate IPF, but had substantially higher mortality. Prospective studies are needed to determine the effect of antifibrotic therapy in patients with advanced IPF.Peer reviewe
Metabolomics analysis identifies sex-associated metabotypes of oxidative stress and the autotaxin-lysoPA axis in COPD.
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease and a leading cause of mortality and morbidity worldwide. The aim of this study was to investigate the sex dependency of circulating metabolic profiles in COPD.Serum from healthy never-smokers (healthy), smokers with normal lung function (smokers), and smokers with COPD (COPD; Global Initiative for Chronic Obstructive Lung Disease stages I-II/A-B) from the Karolinska COSMIC cohort (n=116) was analysed using our nontargeted liquid chromatography-high resolution mass spectrometry metabolomics platform.Pathway analyses revealed that several altered metabolites are involved in oxidative stress. Supervised multivariate modelling showed significant classification of smokers from COPD (p=2.8×10-7). Sex stratification indicated that the separation was driven by females (p=2.4×10-7) relative to males (p=4.0×10-4). Significantly altered metabolites were confirmed quantitatively using targeted metabolomics. Multivariate modelling of targeted metabolomics data confirmed enhanced metabolic dysregulation in females with COPD (p=3.0×10-3) relative to males (p=0.10). The autotaxin products lysoPA (16:0) and lysoPA (18:2) correlated with lung function (forced expiratory volume in 1 s) in males with COPD (r=0.86; p<0.0001), but not females (r=0.44; p=0.15), potentially related to observed dysregulation of the miR-29 family in the lung.These findings highlight the role of oxidative stress in COPD, and suggest that sex-enhanced dysregulation in oxidative stress, and potentially the autotaxin-lysoPA axis, are associated with disease mechanisms and/or prevalence
Assessing Recent Smoking Status by Measuring Exhaled Carbon Monoxide Levels
The main expectations of applying proteomics technologies to clinical questions are the discovery of disease related biomarkers. Despite technological advancement to increase proteome coverage and depth to meet these expectations the number of generated biomarkers for clinical use is small. One of the reasons is that found potential biomarkers often are false discoveries. Small sample sizes, in combination with patient sample heterogeneity increase the risk of false discoveries. To be able to extract relevant biological information from such data, high demands are put on the experimental design and the use of sensitive and quantitatively accurate technologies.
The overall aim of this thesis was to apply quantitative proteomics methods for biomarker discovery in clinical samples. A method for reducing bias by controlling for individual variation in smoking habits is described in paper I. The aim of the method was objective assessment of recent smoking in clinical studies on inflammatory responses. In paper II, the proteome of alveolar macrophages obtained from smoking subjects with and without the inflammatory lung disease chronic obstructive pulmonary disease (COPD) were quantified by two-dimensional gel-electrophoresis (2-DE). A gender focused analysis showed protein level differences within the female group, with down-regulation of lysosomal pathway and up-regulation of oxidative pathway in COPD patients. Paper III, a mass spectrometry based proteomics analysis of tumour samples, contributes to the molecular understanding of vulvar squamous cell carcinoma (VSCC) and we identified a high risk patient subgroup of HPV-negative tumours based on the expression of four proteins, further suggesting that this subgroup is characterized by an altered ubiquitin-proteasome signalling pathway. Paper III describes a data analysis workflow for the extraction of biological information from quantitative mass spectrometry based proteomics data. High patient-to-patient tumour proteome variability was addressed by using pathway profiling on individual tumour data, followed by comparison of pathway association ranks in a multivariate analysis. We show that pathway data on individual tumour level can detect subpopulations of patients and identify pathways of specific importance in pre-defined clinical groups by the use of multivariate statistics. In paper IV, the potentials and limits of quantitative mass spectrometry on clinical samples was evaluated by defining the quantitative accuracy of isobaric labels and label-free quantification. Quantification by isobaric labels in combination with pI pre-fractionation showed a lower limit of quantification (LOQ) than a label-free analysis without pI pre-fractionation, and 6-plex TMT were more sensitive than 8-plex iTRAQ. Precursor mixing measured by isolation interference (MS1 interference) is more linked to the quantitative accuracy of isobaric labels than reporter ion interference (MS2 interference). Based on that we could define recommendations for how much isolation interference that can be accepted; in our data <30% isolation interference had little effect the quantitative accuracy.
In conclusion, getting biological knowledge from proteomics studies requires a careful study design, control of possible confounding factors and the use of clinical data to identify disease subtypes. Further, to be able to draw conclusions from the data, the analysis requires accurate quantitative data and robust statistical tools to detect significant protein alterations. Methods around these issues are developed and discussed in this thesis
Asthmatics Exhibit Altered Oxylipin Profiles Compared to Healthy Individuals after Subway Air Exposure
Asthma is a chronic inflammatory lung disease that causes significant morbidity and mortality worldwide. Air pollutants such as particulate matter (PM) and oxidants are important factors in causing exacerbations in asthmatics, and the source and composition of pollutants greatly affects pathological implications.This randomized crossover study investigated responses of the respiratory system to Stockholm subway air in asthmatics and healthy individuals. Eicosanoids and other oxylipins were quantified in the distal lung to provide a measure of shifts in lipid mediators in association with exposure to subway air relative to ambient air.Sixty-four oxylipins representing the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP) metabolic pathways were screened using liquid chromatography-tandem mass spectrometry (LC-MS/MS) of bronchoalveolar lavage (BAL)-fluid. Validations through immunocytochemistry staining of BAL-cells were performed for 15-LOX-1, COX-1, COX-2 and peroxisome proliferator-activated receptor gamma (PPARγ). Multivariate statistics were employed to interrogate acquired oxylipin and immunocytochemistry data in combination with patient clinical information.Asthmatics and healthy individuals exhibited divergent oxylipin profiles following exposure to ambient and subway air. Significant changes were observed in 8 metabolites of linoleic- and α-linolenic acid synthesized via the 15-LOX pathway, and of the COX product prostaglandin E(2) (PGE(2)). Oxylipin levels were increased in healthy individuals following exposure to subway air, whereas asthmatics evidenced decreases or no change.Several of the altered oxylipins have known or suspected bronchoprotective or anti-inflammatory effects, suggesting a possible reduced anti-inflammatory response in asthmatics following exposure to subway air. These observations may have ramifications for sensitive subpopulations in urban areas
Cell Recovery in Bronchoalveolar Lavage Fluid in Smokers Is Dependent on Cumulative Smoking History
Background: Smoking is a risk factor for various lung diseases in which BAL may be used as a part of a clinical investigation. Interpretation of BAL fluid cellularity is however difficult due to high variability, in particular among smokers. In this study we aimed to evaluate the effect of smoking on BAL cellular components in asymptomatic smokers. The effects of smoking cessation, age and gender were also investigated in groups of smokers and exsmokers. Methods: We performed a retrospective review of BAL findings, to our knowledge the largest single center investigation, in our department from 1999 to 2009. One hundred thirty two current smokers (48 males and 84 females) and 44 ex-smokers (16 males and 28 females) were included. A group of 295 (132 males and 163 females) never-smokers served as reference. Result: The median [5–95 pctl] total number of cells and cell concentration in current smokers were 63.4 [28.6–132.1]610 6 and 382.1 [189.7–864.3]610 6 /L respectively and correlated positively to the cumulative smoking history. Macrophages were the predominant cell type (96.7 % [90.4–99.0]) followed by lymphocytes (2 % [0.8–7.7]) and neutrophils (0.6 % [0–2.9]). The concentration of all inflammatory cells was increased in smokers compared to never smokers and ex-smokers. BAL fluid recovery was negatively correlated with age (p,0.001). Smoking men had a lower BAL fluid recovery than smoking women. Conclusion: Smoking has a profound effect on BAL fluid cellularity, which is dependent on smoking history. Our results performed on a large group of current smokers and ex-smokers in a well standardized way, can contribute to bette
High-Precision Automated Workflow for Urinary Untargeted Metabolomic Epidemiology
Urine is a non-invasive biofluid that is rich in polar metabolites and well-suited for metabolomic epidemiology. However, due to individual variability in health and hydration status, the physiological concentration of urine can differ >15-fold, which can pose major challenges in untargeted LC-MS metabolomics. Although numerous urine normalization methods have been implemented (e.g., creatinine, specific gravity – SG), most are manual and therefore not practical for population-based studies. To address this issue, we developed a method to measure SG in 96-well-plates using a refractive index detector (RID), which exhibited accuracy within 85-115% and 540 urinary metabolites including endogenous and exogenous compounds. This platform is suitable for performing urinary untargeted metabolomic epidemiology and will be useful for applications in population-based molecular phenotyping
Smoking-associated increase in mucins 1 and 4 in human airways
Abstract
Rationale: Smoking-related chronic obstructive pulmonary disease (COPD) is associated with dysregulated production of mucus. Mucins (MUC) are important both for mucus secretion and epithelial defense. We have examined the distribution of MUC1 and MUC4 in the airway epithelial cells of never-smokers and smokers with and without COPD.
Methods: Mucosal biopsies and bronchial wash samples were obtained by bronchoscopy from age- and sex-matched COPD-patients (n = 38; GOLD I-II/A-B), healthy never-smokers (n = 40) and current smokers with normal lung function (n = 40) from the Karolinska COSMIC cohort (NCT02627872). Cell-specific expressions of MUC1, MUC4 and regulating factors, i.e., epithelial growth factor receptor (EGFR) 1 and 2, were analyzed by immunohistochemistry. Soluble MUC1 was measured by quantitative immunodetection on slot blot.
Results: The levels of cell-bound MUC1 expression in basal cells and in soluble MUC1 in bronchial wash were increased in smokers, regardless of airway obstruction. Patients with chronic bronchitis had higher MUC1 expression. The expression of MUC4 in cells with goblet cell phenotype was increased in smokers. The expression of EGFR2, but not that of EGFR1, was higher in never-smokers than in smokers.
Conclusions: Smoking history and the presence of chronic bronchitis, regardless of airway obstruction, affect both cellular and soluble MUC1 in human airways. Therefore, MUC1 may be a novel marker for smoking- associated airway disease
Long-term smoking alters abundance of over half of the proteome in bronchoalveolar lavage cell in smokers with normal spirometry, with effects on molecular pathways associated with COPD
Abstract Background Smoking represents a significant risk factor for many chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). Methods To identify dysregulation of specific proteins and pathways in bronchoalveolar lavage (BAL) cells associated with smoking, isobaric tags for relative and absolute quantitation (iTRAQ)-based shotgun proteomics analyses were performed on BAL cells from healthy never-smokers and smokers with normal lung function from the Karolinska COSMIC cohort. Multivariate statistical modeling, multivariate correlations with clinical data, and pathway enrichment analysis were performed. Results Smoking exerted a significant impact on the BAL cell proteome, with more than 500 proteins representing 15 molecular pathways altered due to smoking. The majority of these alterations occurred in a gender-independent manner. The phagosomal- and leukocyte trans endothelial migration (LTM) pathways significantly correlated with FEV1/FVC as well as the percentage of CD8+ T-cells and CD8+CD69+ T-cells in smokers. The correlations to clinical parameters in healthy never-smokers were minor. Conclusion The significant correlations of proteins in the phagosome- and LTM pathways with activated cytotoxic T-cells (CD69+) and the level of airway obstruction (FEV1/FVC) in smokers, both hallmarks of COPD, suggests that these two pathways may play a role in the molecular events preceding the development of COPD in susceptible smokers. Both pathways were found to be further dysregulated in COPD patients from the same cohort, thereby providing further support to this hypothesis. Given that not all smokers develop COPD in spite of decades of smoking, it is also plausible that some of the molecular pathways associated with response to smoking exert protective mechanisms to smoking-related pathologies in resilient individuals. Trial registration ClinicalTrials.gov identifier NCT02627872; Retrospectively registered on December 9, 2015