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Rationale:Chronic obstructive pulmonary disease (COPD) is a complex disease

caused by a multitude of underlying mechanisms, and molecular mechanistic

modeling of COPD, especially at a multi-molecular level, is needed to facilitate

the development of molecular diagnostic and prognostic tools and efficacious

treatments.

Objectives: To investigate themiRNA–mRNA–protein dysregulated network to

facilitate prediction of biomarkers and disease subnetwork in COPD in women.

Measurements and Results: Three omics data blocks (mRNA, miRNA, and

protein) collected from BAL cells from female current-smoker COPD

patients, smokers with normal lung function, and healthy never-smokers

were integrated with miRNA–mRNA–protein regulatory networks to

construct a COPD-specific dysregulated network. Furthermore, downstream

network topology, literature annotation, and functional enrichment analysis

identified both known and novel disease-related biomarkers and pathways.

Both abnormal regulations in miRNA-induced mRNA transcription and protein

translation repression play roles in COPD. Finally, the let-7-AIFM1-FKBP1A

pathway is highlighted in COPD pathology.

Conclusion: For the first time, a comprehensive miRNA–mRNA–protein

dysregulated network of primary immune cells from the lung related to

COPD in females was constructed to elucidate specific biomarkers and

disease pathways. The multi-omics network provides a new molecular

insight from a multi-molecular aspect and highlights dysregulated

interactions. The highlighted let-7-AIFM1-FKBP1A pathway also indicates

new hypotheses of COPD pathology.
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1 Introduction

Chronic obstructive pulmonary disease (COPD) is a

complex disease representing an umbrella diagnosis caused

by a multitude of underlying mechanisms, including

environmental exposures, genetic predispositions, and

developmental factors (Merikallio et al., 2020; Nouws et al.,

2021). Molecular mechanistic modeling of COPD, especially

at a multi-omics level, will therefore be essential in order to

develop relevant diagnostic and treatment options for this

constantly growing patient group (Li et al., 2018). miRNAs

and their dysregulations in mRNA and protein expression

have been proved to play important roles in the progression of

COPD and other complex diseases (Szymczak et al., 2016;

Canas et al., 2020). The availability of the miRNA–mRNA

regulatory network and multi-omics expression profile at

miRNA, mRNA, and protein levels, as well as newly

developed computational approaches, provides an

opportunity to systematically investigate the

miRNA–mRNA–mRNA dysregulated network in COPD.

miRNAs and their dysregulations in mRNA and protein

expression have been proved to play important roles in the

progression of COPD and other complex diseases (Van

Pottelberge et al., 2011; Ezzie et al., 2012; Liu et al., 2016;

Qian et al., 2018; Canas et al., 2020). In particular,

differentially expressed miRNA, mRNA, and their

dysregulated interactions have been studied. Liu et al.

identified potential COPD genes in the

methylation–microRNA–MRNA–GO network. Qian et al.

investigated miRNA–mRNA–lncRNA networks in non-

smoking and smoking patients with COPD (Qian et al.,

2018). Multi-omics integration and computational systems

medicine approaches have been developed and applied in the

subgrouping and biomarker identification of complex,

heterogeneous diseases (Sathyanarayanan et al., 2020;

Cheng et al., 2021; Li et al., 2022). Methods for differential

co-expression networks to identify changes in disease or

response to external perturbation are emerging in which

the focus is on dysregulated network edges (regulations)

instead of dysregulated nodes to assemble disease-related

signatures (Xu et al., 2011b; van Dam et al., 2018; Savino

et al., 2020). Specifically, we have shown that multi-omics

integration analysis improves the power to define subgroups

with a small sample size in COPD, which also indicates its

potential ability to capture molecular modeling of disease (Li

et al., 2018). miRNA and its dysregulation in COPD

progression have been proved in multiple studies, and

many miRNAs (clusters) have been listed (Canas et al.,

2020). In our previous works, we have performed a series

of studies ranging from the construction of a miRNA–miRNA

synergistic network to prioritizing disease miRNA and

miRNA–mRNA dysregulated bi-modules by network-based

integration of miRNA and mRNA expression with a three-

level hypergraph, namely, miRNA–miRNA synergistic

network, miRNA–mRNA regulatory network, and

functional gene network (Xu et al., 2011a; Xu et al., 2011b;

Xu et al., 2013). Here, we defined the union of differential co-

expression regulations from miRNA to target mRNA, mRNA

to protein, and miRNA to protein, as a dysregulated network.

We focused on exploring the regulatory changes from

miRNAs to mRNAs and proteins with the integration of

triple omics data, as well as the miRNA to mRNA targeting

network. In this study, we extended this systematic method to

identify a COPD-related miRNA–mRNA–protein

dysregulated network by integration of the

miRNA–mRNA–protein regulatory network with triple

omics from the Karolinska COSMIC cohort of COPD.

2 Materials and methods

2.1 Clinical cohort

Omics data blocks from the Karolinska COSMIC cohort

(ClinicalTrials.gov ID: NCT02627872), a three-group cross-

sectional study (Kohler et al., 2013) (Li et al., 2018) with age-

(45–65 years) and sex-matched groups of healthy never-

smokers (“healthy”), smokers with normal lung function

(“smokers”), and COPD patients (“COPD”; GOLD stage

I–II/A–B; FEV1 = 51–97%; FEV1/FVC<70%), were utilized

(see clinical parameters in Supplementary Table S1). The

COPD group of the full cohort contained both current

smokers and ex-smokers. For this study, only current-

smoker COPD patients were included to limit confounding

effects of acute smoking. Bronchoalveolar lavage (BAL) was

collected as previously described (Kohler et al., 2013;

Forsslund et al., 2014). Participants had no history of

allergy or asthma, did not use inhaled or oral

corticosteroids, and had no exacerbations for at least

3 months prior to study inclusion. Current smokers were

matched in terms of smoking history (>10 pack-years) and

current smoking habits (>10 cigarettes/day in the past

6 months). Current smoking status and abstinence for >8 h
prior to BAL were verified through exhaled carbon monoxide

(Sandberg et al., 2011). The study was approved by

the Stockholm Regional Ethical Board (Case No. 2006/959-

31/1), and participants provided their informed written

consent.

2.2 miRNA, mRNA, and protein omics data
blocks from BAL cells

Three omics data blocks from the same 20 female subjects

(four healthy, 11 smokers, and five COPD) were utilized. RNA

from BAL cells was isolated into two fractions containing
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small RNAs (including miRNAs) and large RNAs (containing

mRNA) using the NucleoSpin® miRNA kit according to the

manufacturer’s instructions (Macherey-Nagel, Düren,

Germany) (Levanen, 2012; Balgoma et al., 2016). mRNA

from BAL cells were hybridized to Agilent human

whole-genome 4 × 44K ink-jet arrays containing a total of

FIGURE 1
Schematic of the construction of the miRNA–mRNA–protein dysregulation network. Three data modalities (miRNA, mRNA, and protein) from
the three groups of healthy never-smokers (healthy), current-smokers with mild-to-moderate COPD (COPD), and smokers with normal lung
function (smokers) (A) were utilized for the construction of a reference network by mapping miRNA to mRNA regulation and mRNA to protein
translation in TargetScan and Ensembl databases (B), resulting in the union of three-node basic motifs (bottom left inset). Status-specific
dysregulated networks from each contrast of interest were then extracted from differentially co-expressed interactions in each status comparison
(C) An integrative dysregulated network (D)was then constructed using the network set operation illustrated in “Network Comparison” (bottom right
inset), where Gt (black) represents the main contrast of interest for this investigation, namely, the difference between the “status-specific
dysregulated networks” in “COPD vs. healthy” (Gu) and “smoker vs. healthy” (Gs), when intersected with the network of “COPD vs. smokers” (Gc).
Finally, sub-networks containing differentially expressed genes (DEGs) were extracted for further investigation (E) In “Basic motif and node colors,”
the node and edge shapes applied to all panels and the node colors used that of panel d and (E) In “Network Comparison and edge colors,” the colors
for different networks corresponded to both edge and node in panel (C) The edge and node colors are grey and black in Reference Network of panel
(B) Created using igraph in R and Cytoscape.
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41,000 probes corresponding to 19,596 Entrez genes.

Small RNA was labeled with Cy3-CTP using the miRCURY

LNA microRNA Power Labeling Kit (Exiqon Inc., Woburn,

MA) and then hybridized to one-color Agilent custom UCSF

multi-species 8 × 15 K ink-jet arrays (Agilent Technologies,

miRNA, v3.6) containing 894 miRNAs. For both mRNA

and miRNA microarrays, raw signal intensities were

extracted using Feature Extraction v10.1 software (Agilent

Technologies); no background subtraction was performed;

and the median feature pixel intensity was used as the

raw signal before normalization (Levanen, 2012; Levanen

et al., 2013; Balgoma et al., 2016). Shotgun proteomics

data from BAL cells were collected using isobaric tags

for relative and absolute quantitation (iTRAQ)

mass spectrometry (MS) (Yang et al., 2018a; Yang et al.,

2018b). Peak integration of iTRAQ MS/MS spectra was

performed using Proteome Discoverer 2.1 (Thermo Fisher

Scientific) and searched against the UniProt human database

(2015_12). Ratio data of samples to reference were log2-

transformed. All data were log2-transformed and quantile-

normalized in the R package limma in Bioconductor (Ritchie

et al., 2015). All mRNA, miRNA, and protein identifiers were

updated in the Ensembl BioMart database (2018–10)

(Cunningham et al., 2022). The data collection platform

and processing are the same as our previous work (Li et al.,

2018).

2.3 Construction of the miRNA-mRNA-
protein dysregulated network

The miRNA–mRNA–protein dysregulated network is

defined as a network with three types of nodes: 1) miRNA,

2) mRNA, and 3) protein and three types of directed edges: 1)

from miRNA to mRNA as targeted regulation, 2) from mRNA

to protein as translation, and 3) from miRNA to protein by

bridging mRNA. The definition of a dysregulated network in

this study is significantly differentially co-expressed patterns

of two connected nodes between two statuses. As illustrated

in the schematic of Figure 1, the construction of the

miRNA–mRNA–protein dysregulated network includes

four steps: first, three data modalities (miRNA, mRNA,

and protein) from the three groups of “healthy”, “COPD”,

and “smokers” (Figure 1A) were utilized to construct the

reference network. The reference network includes three

types of nodes (miRNA, mRNA, and protein) and three

types of directed edges (miRNA regulation of mRNA based

on the TargetScan database version 7.1 (Agarwal et al., 2015),

mRNA translation to protein based on the Ensembl database

version 84 (Howe et al., 2021), and miRNA potential

regulation of protein inferred from the protein’s

corresponding mRNA, based on transfer regulation from

miRNA to mRNA to protein from TargetScan). It is the

union of three-node basic motifs (Figure 1, bottom left

inset). Second, “status-specific dysregulated networks”

from each contrast of interest were then extracted from

differentially co-expressed interactions in each status

comparison (Figure 1C). For every two-status comparison,

such as “COPD vs. healthy”, the edge weight is the absolute

difference between the Pearson correlation coefficients of two

connected nodes in each status, in accordance with the

definition used in our previously published study on

prostate cancer (Xu et al., 2011b). Subsequently, the

corresponding false discovery rate (FDR) is estimated

based on 10,000 permutations of the sample status (Storey

and Tibshirani, 2003). The largest connected part in the

reference network after filtering of edges based on FDR

thresholds is defined as the status-specific dysregulated

network. Third, the “integrative dysregulated network”

(Figure 1D) was then constructed using the network set

operation (illustrated in Network Comparison of Figure 1,

bottom right inset). The integrative dysregulation network

was constructed based on the difference between the “status-

specific dysregulated networks” in “COPD vs. healthy” and

“smoker vs. healthy” and then intersected with the network of

“COPD vs. smokers.” Finally, the “sub-network of

differentially expressed genes (DEGs)” was extracted from

the integrative dysregulated network if both connected nodes

were differentially expressed in either “COPD vs. smokers” or

“COPD vs. healthy” (Figure 1E). DEGs were tested by the

t-test to check if the variable’s expression fits normal

distribution and homogenous variance among all subjects;

otherwise, the Kruskal–Wallis rank-sum test was performed

(p-value ≤ 0.05). Overall, the input of construction of a

miRNA–mRNA–protein dysregulated network is the three

omics data, links of miRNA to mRNA regulation and mRNA

to protein mapping. It outputs three status-specific

dysregulated networks, an integrative dysregulated

network, and a sub-network of DEGs.

2.4 Topological analysis and motif
identification

The topological analysis includes calculation and

identification of degrees (the number of connections of

nodes), hubs (nodes with high degrees), betweenness

centrality (the number of “shortest paths” going through

nodes), bottlenecks (nodes with a high betweenness

centrality), communities (densely connected subgraphs via

random walks), and degree distribution using the R package

igraph (Csardi and Nepusz, 2006; Barabasi et al., 2011). The

three-node motifs (repeated triangle structure in Figure 2) were

identified using an exhaustive method.

The power-law degree distribution (the probability

distribution of these degrees over the whole network) was
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estimated through linear regression analysis with R-squared as

the goodness-of-fit measure.

2.5 Functional enrichment analysis

Function enrichment analysis was performed for function

terms from the Gene Ontology (biological process (BP),

cellular component (CC), and molecular function (MF))

(Ashburner et al., 2000), KEGG (Kanehisa and Goto, 2000),

Reactome (Jassal et al., 2020), WikiPathways (Martens et al.,

2021) (exclude disease pathways), and MSigDB (Subramanian

et al., 2005) databases by the over-representation analysis

(ORA) method using the R package WebGestaltR (version

0.3.1) (Liao et al., 2019). ORA tested all terms from these

databases with 5–500 gene annotations, and then enrichment

FDR was estimated using the Benjamini–Hochberg method.

The whole human genome was used as the reference genome

(hg19). An enriched function graph was constructed, with

function terms as nodes and overlaps (in the network)

between terms as edges. The weights of edges were the

numbers of shared genes in the integrative dysregulated

network between each pair of function terms. The clusters

of functions were identified as the network communities

(densely connected subgraphs) via random walks using the

R package igraph (Csardi and Nepusz, 2006; Barabasi et al.,

2011).

2.6 miRNA disease gene knowledge
databases

Information for all miRNAs in the dysregulated network

was retrieved from 11 disease gene databases, namely,

Gene2Function (Hu et al., 2017), KEGG (Kanehisa and

Goto, 2000), MegGen (https://www.ncbi.nlm.nih.gov/

medgen/9818), DISEASE (Pletscher-Frankild et al., 2015),

VarfromPDB (https://cran.r-project.org/web/packages/

FIGURE 2
Integrative dysregulated network (A), its degree distribution (B), and three-node motifs and their counts (C). (A) Integrative dysregulated
network is a directed network from miRNA to mRNA, mRNA to protein, or from miRNA to protein (see legend inset, bottom right). Nodes with red,
blue, and yellow borders represent miRNA, mRNA, and protein, respectively. Red and blue edges mean increased or decreased co-expression
between COPD and smokers, respectively. The full network with the dynamic layout and searchable gene names and functions in the HTML
format is available at https://chuanxingli.github.io/pages/Sharing/FigS3.html and in Supplementary Figure S3. (B) Power-law degree distribution with
the linear regression of degree (k) ~ the probability of degree (P(k) in log10 scale) of linear regression R-squared = 0.943, p-value = 8.19*10–6. (C)
Four major types of three-nodemotifs and their counts in the integrative network. Motifs 1 and 2meanmiRNAs significantly (FDR<=0.2) increased or
decreased the regulation of mRNA transcription repression in COPD vs. smoker, respectively. Motifs 3 and 4 mean miRNAs significantly (FDR ≤0.2)
increased or decreased the regulation of protein expression (potential protein translation inhibition) in COPD vs. smoker, respectively. The number
under the motif is their count in the integrative regulated network. Created using igraph and Cytoscape. The full names of genes are provided in
Supplementary Table S2.
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VarfromPDB/), GAD (Becker et al., 2004), HMDD V3.0

(Huang et al., 2019), EDGAR (Babbi et al., 2017),

DisGeNET v6 (Pinero et al., 2020), GeneCards (https://

www.genecards.org/), and Disease Ontology (https://

disease-ontology.org).

3 Results

3.1 Construction of the dysregulated
miRNA–mRNA–protein network in COPD
in females

An integrative dysregulated network was constructed,

including 70 miRNAs, 66 mRNA, and 100 protein nodes

linked by a total of 275 dysregulated edges (100 miRNA to

mRNAs, 164 miRNAs to protein, and 11 mRNAs to protein

dysregulation, see Figures 1D, 2A), as in the illustration of

steps in Figure 1. The definition of “dysregulated” in this

article is significantly differentially co-expressed patterns of

two connected nodes between two statuses. Three miRNA

dysregulated networks for COPD smokers versus smokers

with normal lung functions (Gc), COPD smokers versus

never-smoking healthy subjects (Gu), and smokers (with

normal lung functions) versus (never-smoking) healthy

subjects (Gs) with FDR ≤0.2 (see Figure 1C and the

methods for dysregulated network construction) were

constructed. Then, an integrative network among them was

generated (subtraction of Gu and Gs and then intersection

with Gc), which included the maximum use of the cohort and

reduced the potential false-positive edges (the definitions of all

these different networks are provided in Supplementary Table

S2 and their degree distribution in Supplementary Figure S1).

The integrative network was used as the

miRNA–mRNA–protein dysregulated network in COPD in

females and is referred to as the integrative dysregulated

network in the following analysis (Figures 1D, 2A).

The integrative dysregulated network is selected as its

maximal utilization of omics data and cohort information

(all three groups of subjects), as well as the most analogy in the

topological characteristics of the known biological networks

with both mathematical and biological meanings. It is a small-

scale graph with less than three hundred nodes and edges.

Both hubs (with a high degree) and bottlenecks (with a high

betweenness centrality) were important in the completeness

and information transfer inside the network. It well matched

the scale-free characteristics with the power-law degree

distribution (the probability distribution of these degrees

over the whole network) in most of the biological networks

on a large scale (Figure 2B. R-squared = 0.943, p-value =

8.19*10–6). It also matched the modularity characteristics in

most biological networks, which correspond to biological

functions (Supplementary Figure S2: 18 densely connected

communities; Supplementary Table S3: all topological features

for each node). In summary, this is a well-connected, scale-

free, and modularized small network.

3.2 Both abnormal regulations in miRNA-
induced mRNA transcription and protein
translation repression play roles in COPD

The dysregulated network is constructed by three-node

motifs (repeated triangle structure) among miRNA, mRNA,

and proteins in which the motifs themselves represent the two

major mechanisms of miRNA regulation: mRNA

transcription repression and protein translation inhibition

(Bartel, 2004; Gebert and MacRae, 2019) (Figure 2C). Based

on our hypothesis that the co-expression (defined by the

Pearson correlation coefficient) indicates the regulation

strengths, the dysregulation in these two regulation types

can be represented by different three-node motifs in the

network. In Figure 2C, four typical types of motifs are

counted in the network. We found 127 dysregulations in

protein translation inhibition and 82 dysregulations in

mRNA transcription repression, which are the major three-

node motif types in the network. These results indicated that

both types of abnormal regulation play a role in the COPD

mechanism. The number and percentage of each miRNA in

each type of motif were presented in the character list to

prioritize candidate risk miRNA (see the full table for all

possible motifs in Supplementary Table S4).

3.3 The integrative network enriched in
three clusters of functions: mitochondrial:
ER, ER: Golgi: neutrophil, and miRNA:
extra-pulmonary manifestations

We investigated the enriched functions of this integrative

dysregulated network in Gene Ontology (Ashburner et al.,

2000), KEGG (Kanehisa and Goto, 2000), Reactome (Jassal

et al., 2020), WikiPathway (Martens et al., 2021) (exclude

disease pathways), and MSigDB (Subramanian et al., 2005)

(see Materials and Methods). The correlation graph among

the 36 enriched functions was further clustered into three

functional clusters in COPD in females, 1) mitochondrial:

endoplasmic reticulum (ER), 2) ER: Golgi: neutrophil, and 3)

miRNA: extra-pulmonary manifestations (Figure 3). In brief,

according to the literature analyses (Tasena et al., 2018,

Dubinsky AN, et al. Cell Metab. 2014), the functions in the

mitochondrial: ER cluster may contribute to COPD

pathogenesis and progression through multiple ways and

affects mTOR signaling, mitophagy, and autophagy. In

addition to the aforementioned mechanism, the ER: Golgi:

neutrophil cluster affects COPD by inflammatory changes
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from neutrophil products. The miRNA and extra-pulmonary

manifestation cluster may affect COPD by chronic mucus

hypersecretion and aging by mTOR signaling, for e.g., through

let-7 inhibitions of cell reprogramming. A complete

explanation of enriched functions’ roles in COPD with

references and their enriched statistics and Entrez Gene ID

are provided in Supplementary Table S5.

3.4 Prioritization of disease biomarkers by
topological bottleneck indexes and
further annotated by function and
literature supports

We further integrated the topological features, function and

literature annotation, and prioritization of disease biomarkers.

Information on all miRNAs in the dysregulated network was

assembled from tenmiRNA disease gene databases (see Materials

and Methods). Twenty-two miRNAs have been reported by at

least one database. As the coverage and annotation depths of the

databases varied, these 22 miRNAs were validated manually

(Supplementary Table S3). Further manual curation revealed

43 additional nodes being related to COPD. Based on our

previous findings in prioritizing prostate cancer disease genes

by topological features, the disease genes tend to link to other

disease genes. In the integrative network, there are 50 genes

connected to 24 literature-support nodes, which is more

interesting for further investigation (see Supplementary Table

S3). In Figure 4, genes are plotted by their differentially expressed

ratios between COPD vs. smoker and COPD vs. healthy. The top

10 miRNAs, mRNAs, and proteins with the highest bottleneck

values are labeled in Figure 4, which are our prioritized risk

gene list.

3.5 Let-7-AIFM1-FKBP1A pathway in
COPD pathology

Based on the definition of a status-specific dysregulated

network, the network is only determined by the differences in

the correlation of two nodes between two statuses but not by the

nodes’ differential expression between two statuses. The

differentially expressed gene (DEG, p-value ≤ 0.05) filter

further extracts a subnetwork with 53 nodes and 45 edges

with ten connected parts in Figure 1E. The poor connection

of the DEG subnetwork further emphasizes the importance of the

construction of the integrative network without including DEG

nodes only.

FIGURE 3
Enriched functions, function clusters, and their potential roles in COPD. The board colors of function terms are Hallmark50 (grey), Gene
Ontology (GO) biological process (blue), GO cellular component (purple), GOmolecular function (red), KEGG pathway (yellow), Reactome pathway
(green), andWikiPathway (brown). The width of the edges corresponds to the number of co-annotated genes. Created using igraph, Cytoscape, and
BioRender.com.
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Notably, literature analyses showed that the miRNA let-

7–apoptosis-inducing factor mitochondria-associated 1

(AIFM1)–FKBP prolyl isomerase 1A (FKBP1A) pathway

shows connections with the regulation of apoptosis and

autophagy in disease (Araki et al., 2009; Yoshida et al.,

2010; Dubinsky et al., 2014; Holze et al., 2018; Houssaini

et al., 2018; Tasena et al., 2018) (Figure 5). In brief, the let-7

family could downregulate the expression of amino acid-

sensing pathway genes to repress mTORC1 and is involved in

autophagy, and FKBP1A is related to the mTOR pathway to

regulate memory T-cell differentiation. AIFM1 is associated

with the reactive oxygen species (ROS) pathway (Figure 5)

4 Discussion

Here, we investigated the dysregulation of the

miRNA–mRNA–protein axis in COPD based on the

integration of triple-omics expression and regulatory

networks. Our focus was placed on the dysregulation

(differential co-expression) in women with mild-to-moderate,

smoking-induced COPD. Based on the constructed differential

network, biomarkers and their topological characteristics were

prioritized and enriched into several at-risk biological functions

and cellular components. Network motif analysis indicated that

both miRNA-induced alterations in mRNA and protein

abundance may play roles in COPD. Finally, downstream

analysis identified that the let-7-AIFM1-FKBP1A pathway,

through ROS and the mTOR pathway, may influence

autophagy and cell differentiation in COPD.

Several factors may influence the outcome of the

dysregulated network, including sample size, study group

homogeneity, and the coverage and accuracy of the reference

regulatory network. Whereas a larger cohort would facilitate

more robust molecular insights, the availability of cohorts that

offer multi-omics data collected from the lung and the site of

inflammation is scarce. The homogenous nature of our

Karolinska COSMIC cohort, with the application of strict

inclusion and exclusion criteria to generate a cohort of early-

stage COPD patients naive of prior treatment and with no

comorbidities, as well as the focus on the female sex only,

aids to improve the statistical power despite the small sample

sizes. We have previously shown that multi-omics integration

can improve the statistical power in small group sizes (Li et al.,

2018). In this study, we attempted to investigate COPD in a

network-based, edge/interaction-focused, and multi-omics

integration fashion as a complement to more traditional

single-omics, single-marker, gene-focused research.

The let-7 family plays an important role in the regulation

of chronic mucus hypersecretion, which has been associated

FIGURE 4
Prioritization of disease genes by topological character in the network and DEG in COPD. Plot of miRNA, mRNA, and protein with their log2 fold
change in COPD vs. healthy (x-axis) and smoker vs. healthy (y-axis). The color and node size correspond to their bottleneck values in the Integrative
Network. The symbols of the top 10 miRNAs, mRNAs, and proteins with the highest bottleneck values are labeled (the full node characters in the
network and differentially expressed tests are provided in Supplementary Table S2). VCP: valosin-containing protein; YWHAZ: tyrosine 3-
monooxygenase/tryptophan 5-monooxygenase activation protein, zeta; CALU: calumenin; SNX6: sorting nexin 6; M6PR: mannose-6-phosphate
receptor, cation-dependent; IER3IP1: immediate early response 3-interacting protein 1; SPCS3: signal peptidase complex subunit 3; RAP2B: RAP2B,
member of the RAS oncogene family; STX7: syntaxin 7; AIFM1: apoptosis-inducing factor mitochondria-associated 1; ATP6V1A: ATPase H+-
transporting V1 subunit A; Q9UNH7: sorting nexin 6; UGGT1: UDP-glucose:glycoprotein glucosyltransferase 1; RAB8A: Ras-related protein Rab-8A;
GOT2: glutamic oxaloacetic transaminase 2; QKI: quaking; VAPA: virulence-associated protein A; VPS26A: vacuolar protein sorting-associated
protein 26a; CAST: calpastatin.
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with a worse prognosis and quality of life in COPD (Tasena

et al., 2018). The let-7 family has been shown to downregulate

the expression of amino acid-sensing pathway genes to repress

mTORC1 (Dubinsky et al., 2014). mTOR signaling has been

associated with cigarette smoke (CS)-induced COPD/

emphysema through its crucial role in regulating autophagy

(Yoshida et al., 2010; Kim and Guan, 2015) and inducing cell

senescence in COPD (Houssaini et al., 2018). Studies have

shown that autoreactive T cells are present in ex-smokers with

emphysema, and the degree of their activation is closely

related to impaired lung function (Xu et al., 2012).

AIFM1 is a proapoptotic factor, binding with the partner of

the phosphatase PGAM5. AIFM1 and PGAM5 are associated

with ROS-induced cell-death signaling (Holze et al., 2018).

Apoptosis of lung structural cells is an important upstream

event in the pathogenesis of COPD (Demedts et al., 2006),

involving the destruction of lung tissue and the development

of emphysema (Song et al., 2021). In addition, epigenetic and

other molecular biological mechanisms presented the role in

apoptosis of pulmonary vascular endothelial cells (Song et al.,

2021). Also, the excessive generation of mitochondrial ROS

has been indicated to promote chronic inflammation of the

airways (Jiang et al., 2017). miR-92b-3p, one of the identified

drivers in the differential network, has been reported to take

part in COPD and several other diseases by regulating

proliferation, apoptosis, and differentiation (Hao et al.,

2018). In addition, hypoxia-induced miR-92b-3p is

indicated as a potent regulator of the mTOR signaling

pathway (Lee et al., 2019). FKBP1A plays a role in antigen-

specific CD8 T cells and is related to the mTOR pathway to

regulate memory T-cell differentiation (Araki et al., 2009).

The subnetwork of let-7-AIFM1-FKBP1A thus explains a

potential mechanism of oxidative stress, ROS, and

apoptosis in COPD pathology.

Here, we presented a systematic multi-omics and

regulatory network integration study to construct a

miRNA–mRNA–protein dysregulation network for COPD

based on the female subjects in our Karolinska COSMIC

cohort. Each miRNA is predicted to target multiple mRNAs,

and conversely, each mRNA can be targeted by many

different miRNAs (Di Leva et al., 2014). Although

miRNAs under certain circumstances can activate protein

FIGURE 5
Let-7-AIFM1-FKBP1A pathway and its potential effect in COPD. The let-7 family has an increased correlation with AIFM1 protein expression in
COPD, which may induce a stronger inhibition than through the ROS and mTOR pathway to influence autophagy and cell differentiation in COPD.
AIFM1: apoptosis-inducing factor mitochondria-associated 1, FKBP1: FKBP prolyl isomerase 1A, MTDH: metadherin, ASPH: aspartate β-hydroxylase,
UGGT1: UDP-glucose:glycoprotein glucosyltransferase 1, ROS: reactive oxygen species, mTOR: mammalian target of rapamycin, COPD:
chronic obstructive pulmonary disease. Created using BioRender.com.
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translation (O’Brien et al., 2018), this study focused on

the more commonly induced suppression of protein

translation. As such, only negative regulations between

miRNA and mRNA were selected for further analysis. The

utilized modelling approach revealed significantly

differentially co-expressed patterns of miRNA-to-mRNA

and miRNA-to-protein in COPD. Furthermore,

downstream network topology, literature annotation, and

functional enrichment analysis prioritized both known and

novel disease-related biomarkers and pathways. Abnormal

regulations in miRNA-induced mRNA transcription and

protein translation repression were found to play roles in

COPD. Specifically, the let-7-AIFM1-FKBP1A pathway is

highlighted in COPD pathology. This study presents a

means of molecular mechanistic modeling of COPD at the

multi-omics level. The improved statistical power achieved

by an integration of molecular information from multiple

levels harbors the potential to facilitate the identification of

putative molecular diagnostic, prognostic, or treatment

targets also in relatively small cohorts, particularly if the

cohorts are well-designed to isolate specific disease sub-

phenotypes of patients.
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