271 research outputs found

    InParanoid 6: eukaryotic ortholog clusters with inparalogs

    Get PDF
    The InParanoid eukaryotic ortholog database (http://InParanoid.sbc.su.se/) has been updated to version 6 and is now based on 35 species. We collected all available ‘complete’ eukaryotic proteomes and Escherichia coli, and calculated ortholog groups for all 595 species pairs using the InParanoid program. This resulted in 2 642 187 pairwise ortholog groups in total. The orthology-based species relations are presented in an orthophylogram. InParanoid clusters contain one or more orthologs from each of the two species. Multiple orthologs in the same species, i.e. inparalogs, result from gene duplications after the species divergence. A new InParanoid website has been developed which is optimized for speed both for users and for updating the system. The XML output format has been improved for efficient processing of the InParanoid ortholog clusters

    Performance of chemically modified reduced graphene oxide (CMrGO) in electrodynamic dust shield (EDS) applications

    Full text link
    Electrodynamic Dust Shield (EDS) technology is a dust mitigation strategy that is commonly studied for applications such as photovoltaics or thermal radiators where soiling of the surfaces can reduce performance. The goal of the current work was to test the performance of a patterned nanocomposite EDS system produced through spray-coating and melt infiltration of chemically modified reduced graphene oxide (CMrGO) traces with thermoplastic high-density polyethylene (HDPE). The EDS performance was tested for a dusting of lunar regolith simulant under high vacuum conditions (~10-6 Torr) using both 2-phase and 3-phase configurations. Uncapped (bare) devices showed efficient dust removal at moderate voltages (1000 V) for both 2-phase and 3-phase designs, but the performance of the devices degraded after several sequential tests due to erosion of the traces caused by electric discharges. Further tests carried out while illuminating the dust surface with a UV excimer lamp showed that the EDS voltage needed to reach the maximum cleanliness was reduced by almost 50% for the 2-phase devices (500 V minimum for rough and 1000 V for smooth), while the 3-phase devices were unaffected by the application of UV. Capping the CMrGO traces with low-density polyethylene (LDPE) eliminated breakdown of the materials and device degradation, but larger voltages (3000 V) coupled with UV illumination were required to remove the grains from the capped devices.Comment: 22 pages, 7 figure

    Network analysis of skin tumor progression identifies a rewired genetic architecture affecting inflammation and tumor susceptibility

    Get PDF
    11 páginas, 5 figuras, 1 tabla.-- et al.[Background]: Germline polymorphisms can influence gene expression networks in normal mammalian tissues and can affect disease susceptibility. We and others have shown that analysis of this genetic architecture can identify single genes and whole pathways that influence complex traits, including inflammation and cancer susceptibility. Whether germline variants affect gene expression in tumors that have undergone somatic alterations, and the extent to which these variants influence tumor progression, is unknown. [Results]: Using an integrated linkage and genomic analysis of a mouse model of skin cancer that produces both benign tumors and malignant carcinomas, we document major changes in germline control of gene expression during skin tumor development resulting from cell selection, somatic genetic events, and changes in the tumor microenvironment. The number of significant expression quantitative trait loci (eQTL) is progressively reduced in benign and malignant skin tumors when compared to normal skin. However, novel tumor-specific eQTL are detected for several genes associated with tumor susceptibility, including IL18 (Il18), Granzyme E (Gzme), Sprouty homolog 2 (Spry2), and Mitogen-activated protein kinase kinase 4 (Map2k4). [Conclusions]: We conclude that the genetic architecture is substantially altered in tumors, and that eQTL analysis of tumors can identify host factors that influence the tumor microenvironment, mitogen-activated protein (MAP) kinase signaling, and cancer susceptibility.This work was supported by the National Cancer Institute. AB acknowledges support from the Barbara Bass Bakar Chair of Cancer Genetics. MDT was supported in part by a Sandler Foundation postdoctoral research fellowship. JS was supported by the Swedish Research Council and the Tegger Foundation. KKL was supported by an NIH Kirschstein-NRSA postdoctoral research fellowship. JPL is partially supported by Carlos III (FIS)/FEDER, MICIIN/plan-E 2009, JCyL (’Biomedicina y Educación’) and CSIC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    A diagnostic real-time PCR assay for the rapid identification of the tomato-potato psyllid, Bactericera cockerelli (Sulc, 1909) and development of a psyllid barcoding database

    Get PDF
    The accurate and rapid identification of insect pests is an important step in the prevention and control of outbreaks in areas that are otherwise pest free. The potato-tomato psyllid Bactericera cockerelli (Sulc, 1909) is the main vector of 'Candidatus Liberibacter solanacearum' on potato and tomato crops in North America and New Zealand; and is considered a threat for introduction in Europe and other pest-free regions. This study describes the design and validation of the first species-specific TaqMan probe-based real-time PCR assay, targeting the ITS2 gene region of B. cockerelli. The assay detected B. cockerelli genomic DNA from adults, immatures, and eggs, with 100% accuracy. This assay also detected DNA from cloned plasmids containing the ITS2 region of B. cockerelli with 100% accuracy. The assay showed 0% false positives when tested on genomic and cloned DNA from 73 other psyllid species collected from across Europe, New Zealand, Mexico and the USA. This included 8 other species in the Bactericera genus and the main vectors of 'Candidatus Liberibacter solanacearum' worldwide. The limit of detection for this assay at optimum conditions was 0.000001ng DNA (similar to 200 copies) of ITS2 DNA which equates to around a 1:10000 dilution of DNA from one single adult specimen. This assay is the first real-time PCR based method for accurate, robust, sensitive and specific identification of B. cockerelli from all life stages. It can be used as a surveillance and monitoring tool to further study this important crop pest and to aid the prevention of outbreaks, or to prevent their spread after establishment in new areas

    Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes

    Get PDF
    The human salivary amylase genes display extensive copy number variation (CNV), and recent work has implicated this variation in adaptation to starch-rich diets, and in association with body mass index. In this work, we use paralogue ratio tests, microsatellite analysis, read depth and fibre-FISH to demonstrate that human amylase CNV is not a smooth continuum, but is instead partitioned into distinct haplotype classes. There is a fundamental structural distinction between haplotypes containing odd or even numbers of AMY1 gene units, in turn coupled to CNV in pancreatic amylase genes AMY2A and AMY2B. Most haplotypes have one copy each of AMY2A and AMY2B and contain an odd number of copies of AMY1; consequently, most individuals have an even total number of AMY1. In contrast, haplotypes carrying an even number of AMY1 genes have rearrangements leading to CNVs ofAMY2A/AMY2B. Read-depth and experimental data showthat different populations harbour different proportions of these basic haplotype classes. In Europeans, the copy numbers of AMY1 and AMY2A are correlated, so that phenotypic associations caused by variation in pancreatic amylase copy number could be detected indirectly as weak association with AMY1 copy number.We showthat the quantitative polymerase chain reaction (qPCR) assay previously applied to the high-throughput measurement of AMY1 copy number is less accurate than the measures we use and that qPCR data in other studies have been further compromised by systematic miscalibration. Our results uncover new patterns in human amylase variation and imply a potential role for AMY2 CNV in functional associations
    corecore