1,693 research outputs found

    Consistency of Lunar Orbiter residuals with trajectory and local gravity effects

    Get PDF
    Harmonic models and Doppler data used to analyze orbital perturbation of Lunar Orbite

    Cloud and boundary layer interactions over the Arctic sea ice in late summer

    Get PDF
    Observations from the Arctic Summer Cloud Ocean Study (ASCOS), in the central Arctic sea-ice pack in late summer 2008, provide a detailed view of cloud- atmosphere-surface interactions and vertical mixing processes over the sea-ice environment. Measurements from a suite of ground-based remote sensors, near-surface meteorological and aerosol instruments, and profiles from radiosondes and a helicopter are combined to characterize a weeklong period dominated by low-level, mixed-phase, stratocumulus clouds. Detailed case studies and statistical analyses are used to develop a conceptual model for the cloud and atmosphere structure and their interactions in this environment. Clouds were persistent during the period of study, having qualities that suggest they were sustained through a combination of advective influences and in-cloud processes, with little contribution from the surface. Radiative cooling near cloud top produced buoyancy-driven, turbulent eddies that contributed to cloud formation and created a cloud-driven mixed layer. The depth of this mixed layer was related to the amount of turbulence and condensed cloud water. Coupling of this cloud-driven mixed layer to the surface boundary layer was primarily determined by proximity. For 75%of the period of study, the primary stratocumulus cloud-driven mixed layer was decoupled from the surface and typically at a warmer potential temperature. Since the near-surface temperature was constrained by the ocean-ice mixture, warm temperatures aloft suggest that these air masses had not significantly interacted with the sea-ice surface. Instead, backtrajectory analyses suggest that these warm air masses advected into the central Arctic Basin from lower latitudes. Moisture and aerosol particles likely accompanied these air masses, providing necessary support for cloud formation. On the occasions when cloud-surface coupling did occur, back trajectories indicated that these air masses advected at low levels, while mixing processes kept the mixed layer in equilibrium with the near-surface environment. Rather than contributing buoyancy forcing for the mixed-layer dynamics, the surface instead simply appeared to respond to the mixedlayer processes aloft. Clouds in these cases often contained slightly higher condensed water amounts, potentially due to additional moisture sources from below

    The spin vector of Venus determined from Magellan data

    Get PDF
    A control network of the north polar region of Venus has been established by selecting and measuring control points on full-resolution radar strips. The measurements were incorporated into a least-squares adjustment program that improved initial estimates of the coordinates of the control points, pole direction, and rotation rate of Venus. The current dataset contains 4206 measurements of 606 points on 619 radar strips. The accuracy of the determination is driven by spacecraft ephemeris errors. An accurate estimate of the rotation period of Venus was obtained by applying an ephemeris improvement technique. The second cycle closure orbits improved ephemeris solutions for 40 orbits (376-384, 520-528, 588-592, 658-668, 1002-1010, 1408-1412, 1746-1764, and 2166-2170) are included and fixed in the geodetic control computations, thus trying the network to the J2000 coordinate system

    Millimeter and submillimeter wave technology developments for the next generation of fusion devices

    Get PDF
    There is increasing demand for compact watt-level coherent sources in the millimeter and submillimeter wave region. The approach that we have taken to satisfy this need is to fabricate two-dimensional grids loaded with oscillators, electronic beam steerers, and frequency multipliers for quasioptical coherent spatial combining of the outputs of a large number of low-power devices

    Neurofilament light protein levels in cerebrospinal fluid predict long-term disability of Guillain-Barre syndrome: A pilot study

    Get PDF
    Objectives: Although the recovery from Guillain‐Barré syndrome (GBS) is good in most patients, some develop permanent severe disability or even die. Early predictors would increase the likelihood to identify patients at risk for poor outcome at the acute stage, allowing them intensified therapeutic intervention. Materials and Method: Eighteen patients with a history of GBS 9‐17 years ago were reassessed with scoring of neurological disability and quality of life assessment (QoL). Their previous diagnostic work‐up included clinical examination with scoring of disability, neurophysiological investigation, a battery of serology tests for infections, and cerebrospinal fluid (CSF) examination. Aliquots of CSF were frozen, stored for 20‐28 years, and analyzed by ELISA for determination of neurofilament light protein (NFL) and glial fibrillary acidic protein (GFAP). Results: Patients with poor outcome (n = 3) had significantly higher NFL and GFAP levels at GBS nadir than those with good outcome (n = 15, P < .01 and P < .05, respectively). High NFL correlated with more prominent disability and worse QoL at long‐term follow‐up (r = .694, P < .001, and SF 36 dimension physical component summary (PCS) (r =−.65, P < .05), respectively, whereas GFAP did not correlate with clinical outcome or QoL. Conclusion: High NFL in CSF at the acute stage of GBS seems to predict long‐term outcome and might, together with neurophysiological and clinical measures, be useful in treatment decisions and clinical care of GBS

    Inversion of droplet aerosol analyzer data for long-term aerosol–cloud interaction measurements

    Get PDF
    The droplet aerosol analyzer (DAA) was developed to study the influence of aerosol properties on clouds. It measures the ambient particle size of individual droplets and interstitial particles, the size of the dry (residual) particles after the evaporation of water vapor and the number concentration of the dry (residual) particles. A method was developed for the evaluation of DAA data to obtain the three-parameter data set: ambient particle diameter, dry (residual) particle diameter and number concentration. First results from in-cloud measurements performed on the summit of Mt. Brocken in Germany are presented. Various aspects of the cloud–aerosol data set are presented, such as the number concentration of interstitial particles and cloud droplets, the dry residue particle size distribution, droplet size distributions, scavenging ratios due to cloud droplet formation and size-dependent solute concentrations. This data set makes it possible to study clouds and the influence of the aerosol population on clouds

    Effect of humidity on nitric acid uptake to mineral dust aerosol particles

    No full text
    International audienceThis study presents the first laboratory observation of HNO3 uptake by airborne mineral dust particles. The model aerosols were generated by dry dispersion of Arizona Test Dust (ATD), SiO2, and by nebulizing a saturated solution of calcium carbonate. The uptake of 13N-labeled gaseous nitric acid was observed in a flow reactor on the 0.2?2 s reaction time scale at room temperature and atmospheric pressure. The amount of nitric acid appearing in the aerosol phase at the end of the flow tube was found to be a linear function of the aerosol surface area. SiO2 particles did not show any significant uptake, while the CaCO3 aerosol was found to be more reactive than ATD. Due to the smaller uncertainty associated with the reactive surface area in the case of suspended particles as compared to bulk powder samples, we believe that we provide an improved estimate of the rate of uptake of HNO3 to mineral dust. The fact that the rate of uptake was smaller at a concentration of 1012 than at 1011 was indicative of a complex uptake mechanism. The uptake coefficient averaged over the first 2 s of reaction time at a concentration of 1012 molecules cm-3 was found to increase with increasing relative humidity, from 0.022±0.007 at 12% RH to 0.113±0.017 at 73% RH , which was attributed to an increasing degree of solvation of the more basic minerals. The extended processing of the dust by higher concentrations of HNO3 at 85% RH led to a water soluble coating on the particles and enhanced their hygroscopicity

    Tracking system analytic calibration activities for the Mariner Mars 1969 mission

    Get PDF
    Calibration activity of Deep Space Network in support of Mars encounter phase of Mariner Mars 1969 missio

    Evidence of two viscous relaxation processes in the collective dynamics of liquid lithium

    Full text link
    New inelastic X-ray scattering experiments have been performed on liquid lithium in a wide wavevector range. With respect to the previous measurements, the instrumental resolution, improved up to 1.5 meV, allows to accurately investigate the dynamical processes determining the observed shape of the the dynamic structure factor, S(Q,ω)S(Q,\omega). A detailed analysis of the lineshapes shows the co-existence of relaxation processes with both a slow and a fast characteristic timescales, and therefore that pictures of the relaxation mechanisms based on a simple viscoelastic model must be abandoned.Comment: 5 pages, 4 .PS figure

    Hygroscopicity of the submicrometer aerosol at the high-alpine site Jungfraujoch, 3580 m a.s.l., Switzerland

    Get PDF
    Data from measurements of hygroscopic growth of submicrometer aerosol with a hygroscopicity tandem differential mobility analyzer (HTDMA) during four campaigns at the high alpine research station Jungfraujoch, Switzerland, are presented. The campaigns took place during the years 2000, 2002, 2004 and 2005, each lasting approximately one month. Hygroscopic growth factors (&lt;i&gt;GF&lt;/i&gt;, i.e. the relative change in particle diameter from dry diameter, &lt;i&gt;D&lt;/i&gt;&lt;sub&gt;0&lt;/sub&gt;, to diameter measured at higher relative humidity, RH) are presented for three distinct air mass types, namely for: 1) free tropospheric winter conditions, 2) planetary boundary layer influenced air masses (during a summer period) and 3) Saharan dust events (SDE). The &lt;i&gt;GF&lt;/i&gt; values at 85% RH (&lt;i&gt;D&lt;/i&gt;&lt;sub&gt;0&lt;/sub&gt;=100 nm) were 1.40&amp;plusmn;0.11 and 1.29&amp;plusmn;0.08 for the first two situations while for SDE a bimodal &lt;i&gt;GF&lt;/i&gt; distribution was often found. No phase changes were observed when the RH was varied between 10–90%, and the continuous water uptake could be well described with a single-parameter empirical model. The frequency distributions of the average hygroscopic growth factors and the width of the retrieved growth factor distributions (indicating whether the aerosol is internally or externally mixed) are presented, which can be used for modeling purposes. &lt;br&gt;&lt;br&gt; Measurements of size resolved chemical composition were performed with an aerosol mass spectrometer in parallel to the &lt;i&gt;GF&lt;/i&gt; measurements. This made it possible to estimate the apparent ensemble mean &lt;i&gt;GF&lt;/i&gt; of the organics (&lt;i&gt;GF&lt;/i&gt;&lt;sub&gt;org&lt;/sub&gt;) using inverse ZSR (Zdanovskii-Stokes-Robinson) modeling. &lt;i&gt;GF&lt;/i&gt;&lt;sub&gt;org&lt;/sub&gt; was found to be ~1.20 at &lt;i&gt;a&lt;/i&gt;&lt;sub&gt;w&lt;/sub&gt;=0.85, which is at the upper end of previous laboratory and field data though still in agreement with the highly aged and oxidized nature of the Jungfraujoch aerosol
    corecore