73 research outputs found

    Whole-genome sequencing redefines Shewanella taxonomy

    Get PDF
    The genus Shewanella encompasses a diverse group of Gram negative, primarily aquatic bacteria with a remarkable ecological relevance, an outstanding set of metabolic features and an emergent clinical importance. The rapid expansion of the genus over the 2000 s has prompted questions on the real taxonomic position of some isolates and species. Recent work by us and others identified inconsistencies in the existing species classification. In this study we aimed to clarify such issues across the entire genus, making use of the genomic information publicly available worldwide. Phylogenomic analyses, including comparisons based on genome-wide identity indexes (digital DNA-DNA hybridization and Average Nucleotide Identity) combined with core and accessory genome content evaluation suggested that the taxonomic position of 64 of the 131 analyzed strains should be revisited. Based on the genomic information currently available, emended descriptions for some Shewanella species are proposed. Our study establishes for the first time a whole-genome based phylogeny for Shewanella spp. including a classification at the subspecific level

    Clonal Relatedness of Enterotoxigenic Escherichia coli (ETEC) Strains Expressing LT and CS17 Isolated from Children with Diarrhoea in La Paz, Bolivia

    Get PDF
    BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) is a major cause of traveller's and infantile diarrhoea in the developing world. ETEC produces two toxins, a heat-stable toxin (known as ST) and a heat-labile toxin (LT) and colonization factors that help the bacteria to attach to epithelial cells. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we characterized a subset of ETEC clinical isolates recovered from Bolivian children under 5 years of age using a combination of multilocus sequence typing (MLST) analysis, virulence typing, serotyping and antimicrobial resistance test patterns in order to determine the genetic background of ETEC strains circulating in Bolivia. We found that strains expressing the heat-labile (LT) enterotoxin and colonization factor CS17 were common and belonged to several MLST sequence types but mainly to sequence type-423 and sequence type-443 (Achtman scheme). To further study the LT/CS17 strains we analysed the nucleotide sequence of the CS17 operon and compared the structure to LT/CS17 ETEC isolates from Bangladesh. Sequence analysis confirmed that all sequence type-423 strains from Bolivia had a single nucleotide polymorphism; SNP(bol) in the CS17 operon that was also found in some other MLST sequence types from Bolivia but not in strains recovered from Bangladeshi children. The dominant ETEC clone in Bolivia (sequence type-423/SNP(bol)) was found to persist over multiple years and was associated with severe diarrhoea but these strains were variable with respect to antimicrobial resistance patterns. CONCLUSION/SIGNIFICANCE: The results showed that although the LT/CS17 phenotype is common among ETEC strains in Bolivia, multiple clones, as determined by unique MLST sequence types, populate this phenotype. Our data also appear to suggest that acquisition and loss of antimicrobial resistance in LT-expressing CS17 ETEC clones is more dynamic than acquisition or loss of virulence factors

    Identification and characterization of the novel colonization factor CS30 based on whole genome sequencing in enterotoxigenic Escherichia coli (ETEC).

    Get PDF
    The ability to colonize the small intestine is essential for enterotoxigenic Escherichia coli (ETEC) to cause diarrhea. Although 22 antigenically different colonization factors (CFs) have been identified and characterized in ETEC at least 30% of clinical ETEC isolates lack known CFs. Ninety-four whole genome sequenced "CF negative" isolates were searched for novel CFs using a reverse genetics approach followed by phenotypic analyses. We identified a novel CF, CS30, encoded by a set of seven genes, csmA-G, related to the human CF operon CS18 and the porcine CF operon 987P (F6). CS30 was shown to be thermo-regulated, expressed at 37 °C, but not at 20 °C, by SDS-page and mass spectrometry analyses as well as electron microscopy imaging. Bacteria expressing CS30 were also shown to bind to differentiated human intestinal Caco-2 cells. The genes encoding CS30 were located on a plasmid (E873p3) together with the genes encoding LT and STp. PCR screening of ETEC isolates revealed that 8.6% (n = 13) of "CF negative" (n = 152) and 19.4% (n = 13) of "CF negative" LT + STp (n = 67) expressing isolates analyzed harbored CS30. Hence, we conclude that CS30 is common among "CF negative" LT + STp isolates and is associated with ETEC that cause diarrhea

    Expression of Colonization Factor CS5 of Enterotoxigenic Escherichia coli (ETEC) Is Enhanced In Vivo and by the Bile Component Na Glycocholate Hydrate

    Get PDF
    Enterotoxigenic Escherichia coli (ETEC) is an important cause of acute watery diarrhoea in developing countries. Colonization factors (CFs) on the bacterial surface mediate adhesion to the small intestinal epithelium. Two of the most common CFs worldwide are coli surface antigens 5 and 6 (CS5, CS6). In this study we investigated the expression of CS5 and CS6 in vivo, and the effects of bile and sodium bicarbonate, present in the human gut, on the expression of CS5. Five CS5+CS6 ETEC isolates from adult Bangladeshi patients with acute diarrhoea were studied. The level of transcription from the CS5 operon was approximately 100-fold higher than from the CS6 operon in ETEC bacteria recovered directly from diarrhoeal stool without sub-culturing (in vivo). The glyco-conjugated primary bile salt sodium glycocholate hydrate (NaGCH) induced phenotypic expression of CS5 in a dose-dependent manner and caused a 100-fold up-regulation of CS5 mRNA levels; this is the first description of NaGCH as an enteropathogenic virulence inducer. The relative transcription levels from the CS5 and CS6 operons in the presence of bile or NaGCH in vitro were similar to those in vivo. Another bile salt, sodium deoxycholate (NaDC), previously reported to induce enteropathogenic virulence, also induced expression of CS5, whereas sodium bicarbonate did not

    Human Gastric Mucins Differently Regulate Helicobacter pylori Proliferation, Gene Expression and Interactions with Host Cells

    Get PDF
    Helicobacter pylori colonizes the mucus niche of the gastric mucosa and is a risk factor for gastritis, ulcers and cancer. The main components of the mucus layer are heavily glycosylated mucins, to which H. pylori can adhere. Mucin glycosylation differs between individuals and changes during disease. Here we have examined the H. pylori response to purified mucins from a range of tumor and normal human gastric tissue samples. Our results demonstrate that mucins from different individuals differ in how they modulate both proliferation and gene expression of H. pylori. The mucin effect on proliferation varied significantly between samples, and ranged from stimulatory to inhibitory, depending on the type of mucins and the ability of the mucins to bind to H. pylori. Tumor-derived mucins and mucins from the surface mucosa had potential to stimulate proliferation, while gland-derived mucins tended to inhibit proliferation and mucins from healthy uninfected individuals showed little effect. Artificial glycoconjugates containing H. pylori ligands also modulated H. pylori proliferation, albeit to a lesser degree than human mucins. Expression of genes important for the pathogenicity of H. pylori (babA, sabA, cagA, flaA and ureA) appeared co-regulated in response to mucins. The addition of mucins to co-cultures of H. pylori and gastric epithelial cells protected the viability of the cells and modulated the cytokine production in a manner that differed between individuals, was partially dependent of adhesion of H. pylori to the gastric cells, but also revealed that other mucin factors in addition to adhesion are important for H. pylori-induced host signaling. The combined data reveal host-specific effects on proliferation, gene expression and virulence of H. pylori due to the gastric mucin environment, demonstrating a dynamic interplay between the bacterium and its host

    Complete genome sequences of two marine Vibrio cholerae strains isolated from the south coast of Sweden

    No full text
    Vibrio cholerae serogroups O1 and O139 are commonly associated with diarrhea, while non-O1-O139 strains may cause wound infections. Here, we present the genome sequences of two V. cholerae strains isolated from blue mussels (Mytilus edulis) collected in coastal waters of southern Sweden

    Indicators of petroleum hydrocarbon biodegradation in anaerobic granitic groundwater

    No full text
    The aim of this study was to find indicators of petroleum biodegradation in granitic groundwater. Both pristine and contaminated groundwaters from boreholes around petroleum storage vaults located approximately 40 m below the surface in granite and with storage capacities of up to 120,000 m(3) were sampled. Total numbers of microorganisms, "most probable numbers" (MPN) of anaerobic bacteria, and chemical indications of microbial activity were determined in the groundwater. Hydrocarbon contaminants and metabolites were detected using gas chromatographymass spectrometry (GC-MS). In contaminated groundwater, the total number of microorganisms was 2-4 x 10(6) ml(-1), which was significantly higher than the 6 x 10(4) ml(-1) found in pristine groundwater. This microbial abundance was also reflected in the MPN analysis. Up to 7 x 10(4) nitrate-, 2 x 10(3) iron-, and 3 x 10(4) sulfate-reducing bacteria were detected in contaminated groundwaters. In such groundwaters, depletion of anaerobic electron acceptors and detection of reduced species could be established. We also proposed using a high alkalinity/hardness of water quota (A/H quota) as an indicator of microbial activity. In contaminated groundwaters the A/H quota averaged 2.8, while in pristine groundwater the same was only 1.3. Moreover, the presence of 20 oxidized petroleum hydrocarbons, i.e., putative metabolites of which 9 were strictly intracellular, was detected in the contaminated groundwaters. Phylogenetic neighbor-joining analysis of 16S rRNA genes provided information about the bacterial communities. The bacteria in contaminated groundwater were found to be strikingly similar to bacteria in other hydrocarbon-contaminated environments
    • …
    corecore