397 research outputs found

    Hydrogenation of ZnFe2O4 Flat Films: Effects of the Pre-Annealing Temperature on the Photoanodes Efficiency for Water Oxidation

    Get PDF
    The effects induced by post-synthesis hydrogenation on ZnFe2O4 flat films in terms of photoelectrochemical (PEC) performance of photoanodes for water oxidation have been deeply investigated as a function of the pre-annealing temperature of the materials. The structure and morphology of the films greatly affect the efficacy of the post synthesis treatment. In fact, highly compact films are obtained upon pre-annealing at high temperatures, and this limits the exposure of the material bulk to the reductive H2 atmosphere, making the treatment largely ineffective. On the other hand, a mild hydrogen treatment greatly enhances the separation of photoproduced charges in films pre-annealed at lower temperatures, as a result of the introduction of oxygen vacancies with n-type character. A comparison between present results and those obtained with ZnFe2O4 nanorods clearly demonstrates that specific structural and/or surface properties, together with the initial film morphology, differently affect the overall contribution of post-synthesis hydrogenation on the efficiency of zinc ferrite-based photoanodes

    Enhanced light harvesting in mesoporous TiO2/P3HT hybrid solar cells using a porphyrin dye

    Get PDF
    We report panchromatic light harvesting in hybrid TiO2/P3HT photovoltaic devices using a porphyrin dye that complements the light absorption of P3HT. The high short circuit photocurrent (12.1 mA cm(-2)) obtained is found to be due, in part, to Forster resonance energy transfer from the P3HT to the dye

    Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting

    Get PDF
    A hematite photoanode showing a stable, record-breaking performance of 4.32 mA/cm(2) photoelectrochemical water oxidation current at 1.23 V vs. RHE under simulated 1-sun (100 mW/cm(2)) irradiation is reported. This photocurrent corresponds to ca. 34% of the maximum theoretical limit expected for hematite with a band gap of 2.1 V. The photoanode produced stoichiometric hydrogen and oxygen gases in amounts close to the expected values from the photocurrent. The hematitle has a unique single-crystalline "wormlike" morphology produced by in-situ two-step annealing at 550 degrees C and 800 degrees C of beta-FeOOH nanorods grown directly on a transparent conducting oxide glass via an all-solution method. In addition, it is modified by platinum doping to improve the charge transfer characteristics of hematite and an oxygen-evolving co-catalyst on the surface.open2

    Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting

    Get PDF
    Determining cost-effective semiconductors exhibiting desirable properties for commercial photoelectrochemical water splitting remains a challenge. Herein, we report a Sb2Se3 semiconductor that satisfies most requirements for an ideal high-performance photoelectrode, including a small band gap and favourable cost, optoelectronic properties, processability, and photocorrosion stability. Strong anisotropy, a major issue for Sb2Se3, is resolved by suppressing growth kinetics via close space sublimation to obtain high-quality compact thin films with favourable crystallographic orientation. The Sb2Se3 photocathode exhibits a high photocurrent density of almost 30mAcm(-2) at 0V against the reversible hydrogen electrode, the highest value so far. We demonstrate unassisted solar overall water splitting by combining the optimised Sb2Se3 photocathode with a BiVO4 photoanode, achieving a solar-to-hydrogen efficiency of 1.5% with stability over 10h under simulated 1 sun conditions employing a broad range of solar fluxes. Low-cost Sb2Se3 can thus be an attractive breakthrough material for commercial solar fuel production. While photoelectrochemical water splitting offers an integrated means to convert sunlight to a renewable fuel, cost-effective light-absorbers are rare. Here, authors report Sb2Se3 photocathodes for high-performance photoelectrochemical water splitting devices

    Prolate spheroidal hematite particles equatorially belt with drug-carrying layered double hydroxide disks: Ring Nebula-like nanocomposites

    Get PDF
    A new nanocomposite architecture is reported which combines prolate spheroidal hematite nanoparticles with drug-carrying layered double hydroxide [LDH] disks in a single structure. Spindle-shaped hematite nanoparticles with average length of 225 nm and width of 75 nm were obtained by thermal decomposition of hydrothermally synthesized hematite. The particles were first coated with Mg-Al-NO3-LDH shell and then subjected to anion exchange with salicylate ions. The resulting bio-nanohybrid displayed a close structural resemblance to that of the Ring Nebula. Scanning electron microscope and transmission electron microscopy images showed that the LDH disks are stacked around the equatorial part of the ellipsoid extending along the main axis. This geometry possesses great structural tunability as the composition of the LDH and the nature of the interlayer region can be tailored and lead to novel applications in areas ranging from functional materials to medicine by encapsulating various guest molecules
    • 

    corecore