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Fig. S1. The molecular structures of the P3HT, Spiro-OMeTAD and YD2 are shown. 

 

Table S1. Photovoltaic performance of YD2 sensitized cells with Spiro-OMeTAD and P3HT. Measured 
under AM1.5 conditions, 100 mW/cm2. (0.20 cm2 of masked active area)  

Device 
JSC 

(mA/cm2) 

VOC 

(mV) 
F.F. 

η 

(%) 

TiO2/P3HT 2.12 425 0.53 0.49 

TiO2/YD2/P3HT 12.1 510 0.50 3.13 

TiO2/YD2/P3HT (duplicate) 10.62 534 0.53 3.03 

TiO2/YD2/Spiro-OMeTAD 2.56 827 0.77 1.64 
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Fig. S2. Photoluminescence spectra of the pristine P3HT film (red) and P3HT/YD2 mixture (black). 

 

Device fabrication details: 

The fabrication of our hybrid solar cells employed a F-doped SnO2 glass substrate (15Ω/□, Pilkington) 
onto which a ~100 nm compact TiO2 layer was deposited by spray pyrolysis.1 Since P3HT is known to 
have difficulties infiltrating the 20 nm pores traditionally used in TiO2-based solar cells,2 we prepared 
our mesoporous TiO2 layer with larger particles and larger pores. A layer about 1 µm thick with 75 
nm TiO2 particles was coated onto the FTO/compact TiO2 substrate using the spin coater. The 75 nm 
powder was received from Showa Titanium Co., and the TiO2 paste was prepared using a previously 
reported procedure.3 The electrode was then annealed at 500 °C for 30 min under oxygen flow, 
followed by treatment with a 0.02 M TiCl4 aqueous solution for 6 hours at room temperature. It was 
re-annealed at 450 ̊ C in air for 30 min and cooled before immersing it into a YD2 dye solution (0.2 
mM in ethanol with 0.4 mM chenodeoxycholic acid to prevent aggregation4) for 18 hours. The dye 
coated TiO2 electrodes were spin-coated at 250 rpm for 500 sec with a regioregular-P3HT solution 
(Reike Metals Co. 30 mg/ml in chlorobenzene). A poly(3,4-ethylenedioxythiophene): 
poly(styrenesulfonate) (PEDOT:PSS) solution (2.8 wt% dispersion in water, Baytron P) diluted with 
two volumes of MeOH was spin-coated onto the TiO2/YD2/P3HT films at 2000 rpm for 30 sec. As a 
counter electrode, Au was deposited on top of the samples using thermal resistance evaporation to 
define an active device area of 0.20 cm2. To compare the TiO2/YD2/P3HT based devices to devices 
without the benefit of the panchromatic light absorption, two types of control devices were 
prepared. First TiO2/P3HT devices were prepared as above, but without the YD2 dye. Also, a YD2 
sensitized TiO2 device with the transparent HTM, Spiro-OMeTAD, was assembled under optimized 
conditions as previously described.5 In this case the mesoporous TiO2 layer had a thickness of 2 µm 
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with 20 nm particles as this morphology has been found to give the highest performance in Spiro-
OMeTAD based devices. 

Additional experimental details: 

Device characterization: The incident photon-to-current conversion efficiency (IPCE) was created by 
using the incident light from a 300 W xenon lamp (ILC Technology, U.S.A.), which had been focused 
through a Gemini-180 double monochromator (Jobin Yvon Ltd.). The irradiation source employed for 
the J-V measurments was a filtered (Schott 113) 450 W xenon light source (Osram XBO 450, USA) 
whose power was adjusted using a reference Si photodiode equipped with a color-matched filter 
(KG-3, Schott), thus reducing the spectral mismatch between the simulated light and AM 1.5G 
irradiation in the region of 350–750 nm to less than 4%. 

PL Measurments: To probe efficient electron transfer from P3HT to YD2, photoluminescence (PL) 
measurements were performed using a time-correlated single photon counting (TCSPC) system from 
PicoQuant. Films were excited with a pulsed laser diode, (model LDH 485: 481nm, 70ps FWHM, 
5MHz) detected with a single photon avalanche diode (PDM 100CT SPAD) attached to a 
monochromator and processed by a PicoHarp 300 correlating system. For the PL measurements we 
deposited the pristine P3HT and the P3HT/YD2 (P3HT:YD2=20:1 concentration ratio) in an inert 
poly(methyl methacrylate) (PMMA) matrix on a glass substrate using a spin coater. 
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