228 research outputs found

    On the conical refraction of hydromagnetic waves in plasma with anisotropic thermal pressure

    Full text link
    A phenomenon analogous to the conical refraction widely known in the crystalooptics and crystaloacoustics is discovered for the magnetohydrodynamical waves in the collisionless plasma with anisotropic thermal pressure. Angle of the conical refraction is calculated for the medium under study which is predicted to be 18∘26â€Č18^{\circ}26^{\prime}. Possible experimental corroborating of the discovered phenomenon is discussed.Comment: 6 pages, REVTeX, Accepted in Physics of Plasma

    Differential rotation and angular momentum

    Get PDF
    Differential rotation not only occurs in astrophysical plasmas like accretion disks, it is also measured in laboratory plasmas as manifested in the toroidal rotation of tokamak plasmas. A re-examination of the Lagrangian of the system shows that the inclusion of the angular momentum’s radial variation in the derivation of the equations of motion produces a force term that couples the angular velocity gradient with the angular momentum. This force term is a property of the angular velocity field, so that the results are valid wherever differential rotation is present

    High-resolution ellipsometric study of an n-alkane film, dotriacontane, adsorbed on a SiO2 surface

    Get PDF
    doi:10.1063/1.1429645Using high-resolution ellipsometry and stray light intensity measurements, we have investigated during successive heating-cooling cycles the optical thickness and surface roughness of thin dotriacontane (n-C32H66) films adsorbed from a heptane (n-C7H16) solution onto SiO2-coated Si(100) single-crystal substrates. Our results suggest a model of a solid dotriacontane film that has a phase closest to the SiO2 surface in which the long-axis of the molecules is oriented parallel to the interface. Above this "parallel film" phase, a solid monolayer adsorbs in which the molecules are oriented perpendicular to the interface. At still higher coverages and at temperatures below the bulk melting point at Tb = 341 K, solid bulk particles coexist on top of the "perpendicular film." For higher temperatures in the range TbTs, a uniformly thick fluid film wets to the parallel film phase. This structure of the alkane/SiO2 interfacial region differs qualitatively from that which occurs in the surface freezing effect at the bulk alkane fluid/vapor interface. In that case, there is again a perpendicular film phase adjacent to the air interface but no parallel film phase intervenes between it and the bulk alkane fluid. Similarities and differences between our model of the alkane/SiO2 interface and one proposed recently will be discussed. Our ellipsometric measurements also show evidence of a crystalline-to-plastic transition in the perpendicular film phase similar to that occurring in the solid bulk particles present at higher coverages. In addition, we have performed high-resolution ellipsometry and stray-light measurements on dotriacontane films deposited from solution onto highly oriented pyrolytic graphite substrates. After film deposition, these substrates proved to be less stable in air than SiO2.This work was supported by the Chilean government under CONICYT Grant No. 018/AT/005NSF and FONDECYT Grant No. 1980586 and by the U.S. National Science Foundation under Grant Nos. INT-9605227, DMR-9802476, and DMR-0109057

    Compressed multiple pattern matching

    Get PDF
    Peer reviewe

    High-Energy Emission From Millisecond Pulsars

    Full text link
    The X-ray and gamma-ray spectrum of rotation-powered millisecond pulsars is investigated in a model for acceleration and pair cascades on open field lines above the polar caps. Although these pulsars have low surface magnetic fields, their short periods allow them to have large magnetospheric potential drops, but the majority do not produce sufficient pairs to completely screen the accelerating electric field. The accelerating particles maintain high Lorentz factors and undergo cyclotron resonant absorption of radio emission, that produces and maintains a large pitch angle, resulting in a strong synchrotron component. The resulting spectra consist of several distinct components: curvature radiation from primary electrons dominating from 1 - 100 GeV, synchrotron radiation from primary and secondary electrons dominating up to about 100 MeV, and much weaker inverse-Compton radiation from primary electrons at 0.1 - 1 TeV. We find that the relative size of these components depends on pulsar period, period derivative, and neutron star mass and radius with the level of the synchrotron component also depending sensitively on the radio emission properties. This model is successful in describing the observed X-ray and gamma-ray spectrum of PSR J0218+4232 as synchrotron radiation, peaking around 100 MeV and extending up to a turnover around several GeV. The predicted curvature radiation components from a number of millisecond pulsars, as well as the collective emission from the millisecond pulsars in globular clusters, should be detectable with AGILE and GLAST. We also discuss a hidden population of X-ray-quiet and radio-quiet millisecond pulsars which have evolved below the pair death line, some of which may be detectable by telescopes sensitive above 1 GeV.Comment: 34 pages, 6 figures, accepted for publication in Astrophysical Journa

    Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting Ω\Omega particles

    Get PDF
    An analytical model is presented for a rectangular lattice of isotropic scatterers with electric and magnetic resonances. Each isotropic scatterer is formed by putting appropriately 6 Ω\Omega-shaped perfectly conducting particles on the faces of a cubic unit cell. A self-consistent dispersion equation is derived and then used to calculate correctly the effective permittivity and permeability in the frequency band where the lattice can be homogenized. The frequency range in which both the effective permittivity and permeability are negative corresponds to the mini-band of backward waves within the resonant band of the individual isotropic scatterer.Comment: 25 pages, 6 figure

    Transverse quasilinear relaxation in inhomogeneous magnetic field

    Get PDF
    Transverse quasilinear relaxation of the cyclotron-Cherenkov instability in the inhomogeneous magnetic field of pulsar magnetospheres is considered. We find quasilinear states in which the kinetic cyclotron-Cherenkov instability of a beam propagating through strongly magnetized pair plasma is saturated by the force arising in the inhomogeneous field due to the conservation of the adiabatic invariant. The resulting wave intensities generally have nonpower law frequency dependence, but in a broad frequency range can be well approximated by the power law with the spectral index -2. The emergent spectra and fluxes are consistent with the one observed from pulsars.Comment: 14 Pages, 4 Figure

    Mesoscopic effective material parameters for thin layers modeled as single and double grids of interacting loaded wires

    Full text link
    As an example of thin composite layers we consider single and double grids of periodically arranged interacting wires loaded with a certain distributed reactive impedance. Currents induced to the wires by a normally incident plane wave are rigorously calculated and the corresponding dipole moment densities are determined. Using this data and the averaged fields we assign mesoscopic material parameters for the proposed grid structures. These parameters depend on the number of grids, and measure the averaged induced polarizations. It is demonstrated that properly loaded double grids possess polarization response that over some frequency range can be described by assigning negative values for the mesoscopic parameters. Discussion is conducted on the physical meaningfulness to assign such material parameters for thin composite slabs. The results predicted by the proposed method for the double-grid structures are compared with the results obtained using the commonly adopted S-parameter retrieval procedure.Comment: 36 pages, 23 figure

    Photodiode based on epitaxial silicon with high sensitivity at the wavelength 254 nm

    Full text link

    Nonlinear theory of mirror instability near threshold

    Full text link
    An asymptotic model based on a reductive perturbative expansion of the drift kinetic and the Maxwell equations is used to demonstrate that, near the instability threshold, the nonlinear dynamics of mirror modes in a magnetized plasma with anisotropic ion temperatures involves a subcritical bifurcation,leading to the formation of small-scale structures with amplitudes comparable with the ambient magnetic field
    • 

    corecore