523 research outputs found

    Comparative prospective randomized open label trial of synbiotic (bifilac) as an add on therapy with standard treatment in patients with aphthous ulcer

    Get PDF
    Background: To trial the safety, efficacy and rapidity of response to a lozenges containing synbiotic in patients with minor aphthous ulcer.Methods: A total of 60 patients were enrolled for the trial after obtaining IEC approval and randomly allocated into two groups. Control “Group A” was administered with conventional treatment i.e., zytee and B complex for 2 weeks and trial “Group B” was administered with Bifilac along with conventional treatment for 2 weeks. The results of this trial were analyzed both subjectively and objectively.Results: Comparing with control group, where standard treatment was used with analgesics and B-complex, the trial group showed a quick relief of pain and helped in reducing mean size of ulcer.Conclusions: This trial was done with synbiotic lozenges in minor aphthous ulcers and it proved to be better alternative for them. Moreover, synbiotics have no adverse effects

    The G-O Rule and Waldmeier Effect in the Variations of the Numbers of Large and Small Sunspot Groups

    Full text link
    We have analysed the combined Greenwich and Solar Optical Observing Network (SOON) sunspot group data during the period of 1874-2011 and determined variations in the annual numbers (counts) of the small, large and big sunspot groups (these classifications are made on the basis of the maximum areas of the sunspot groups). We found that the amplitude of an even-numbered cycle of the number of large groups is smaller than that of its immediately following odd-numbered cycle. This is consistent with the well known Gnevyshev and Ohl rule or G-O rule of solar cycles, generally described by using the Zurich sunspot number (Rz). During cycles 12-21 the G-O rule holds good for the variation in the number of small groups also, but it is violated by cycle pair (22, 23) as in the case of Rz. This behaviour of the variations in the small groups is largely responsible for the anomalous behaviour of Rz in cycle pair (22, 23). It is also found that the amplitude of an odd-numbered cycle of the number of small groups is larger than that of its immediately following even-numbered cycle. This can be called as `reverse G-O rule'. In the case of the number of the big groups, both cycle pairs (12, 13) and (22, 23) violated the G-O rule. In many cycles the positions of the peaks of the small, large, and big groups are different and considerably differ with respect to the corresponding positions of the Rz peaks. In the case of cycle 23, the corresponding cycles of the small and large groups are largely symmetric/less asymmetric (Waldmeier effect is weak/absent) with their maxima taking place two years later than that of Rz. The corresponding cycle of the big groups is more asymmetric (strong Waldmeier effect) with its maximum epoch taking place at the same time as that of Rz.Comment: 13 pages, 5 figures, 1 table, accepted by Solar Physic

    USE OF INFORMATION TECHNOLOGY BY THE MEDICAL STUDENTS

    Get PDF
    Background: Usage of information technology   is increasing among university students. The extent of usage among medical students is not studied well. The aim of the study is to assess the usage pattern of information technology by first year and second year medical students of government Kilpauk medical college. Chennai. Method : 200 students of first year and second year students were participated in this study. They were interviewed using pretested questionnaire to bring out the different pattern of the internet use and application knowledge of information technology in medical field. Results: Among 200 students 84% of second years and43% of first years access the internet using their mobile phones .The application knowledge of information technology (IT) is 97% in second year students when compared to first year student45%.Majority of students(97%) prefers computer classes to be included in medical curriculum. Conclusion: The usage of information technology by the second year medical students are increasing when compared to the newly admitted students  and also the purpose of using IT  and knowledge of  IT in medical field  also improving when they are entering second year. Key words: computer, internet , information technology

    OneG: A Computational Tool for Predicting Cryptic Intermediates in the Unfolding Kinetics of Proteins under Native Conditions

    Get PDF
    Understanding the relationships between conformations of proteins and their stabilities is one key to address the protein folding paradigm. The free energy change (ΔG) of unfolding reactions of proteins is measured by traditional denaturation methods and native hydrogen-deuterium (H/D) exchange methods. However, the free energy of unfolding (ΔGU) and the free energy of exchange (ΔGHX) of proteins are not in good agreement, though the experimental conditions of both methods are well matching to each other. The anomaly is due to any one or combinations of the following reasons: (i) effects of cis-trans proline isomerisation under equilibrium unfolding reactions of proteins (ii) inappropriateness in accounting the baselines of melting curves (iii) presence of cryptic intermediates, which may elude the melting curve analysis and (iv) existence of higher energy metastable states in the H/D exchange reactions of proteins. Herein, we have developed a novel computational tool, OneG, which accounts the discrepancy between ΔGU and ΔGHX of proteins by systematically accounting all the four factors mentioned above. The program is fully automated and requires four inputs: three-dimensional structures of proteins, ΔGU, ΔGU* and residue-specific ΔGHX determined under EX2-exchange conditions in the absence of denaturants. The robustness of the program has been validated using experimental data available for proteins such as cytochrome c and apocytochrome b562 and the data analyses revealed that cryptic intermediates of the proteins detected by the experimental methods and the cryptic intermediates predicted by the OneG for those proteins were in good agreement. Furthermore, using OneG, we have shown possible existence of cryptic intermediates and metastable states in the unfolding pathways of cardiotoxin III and cobrotoxin, respectively, which are homologous proteins. The unique application of the program to map the unfolding pathways of proteins under native conditions have been brought into fore and the program is publicly available at http://sblab.sastra.edu/oneg.htm

    Structural and magnetic characterization of batch-fabricated nickel encapsulated multi-walled carbon nanotubes

    Get PDF
    We report on the growth and fabrication of Ni-filled multi-walled carbon nanotubes (Ni-MWNTs) with an average diameter of 115 nm and variable length of 400 nm-1ÎĽm. The Ni-MWNTs were grown using template-assisted electrodeposition and low pressure chemical vapor deposition (LPCVD) techniques. Anodized alumina oxide (AAO) templates were fabricated on Si using a current controlled process. This was followed by the electrodeposition of Ni nanowires (NWs) using galvanostatic pulsed current (PC) electrodeposition. Ni NWs served as the catalyst to grow Ni-MWNTs in an atmosphere of H2/C2H2 at a temperature of 700Âş C. Time dependent depositions were carried out to understand the diffusion and growth mechanism of Ni-MWNTs. Characterization was carried out using scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), Raman spectroscopy and energy dispersive x-ray spectroscopy (EDX). TEM analysis revealed that the Ni nanowires possess a fcc structure. To understand the effects of the electrodeposition parameters, and also the effects of the high temperatures encountered during MWNT growth on the magnetic properties of the Ni-MWNTs, vibrating sample magnetometer (VSM) measurements were performed. The template-based fabrication method is repeatable, efficient, enables batch fabrication and provides good control on the dimensions of the Ni-MWNT

    Screening the medicines for Malaria Venture "Malaria Box" against the Plasmodium falciparum aminopeptidases, M1, M17 and M18

    Get PDF
    Malaria is a parasitic disease that remains a global health burden. The ability of the parasite to rapidly develop resistance to therapeutics drives an urgent need for the delivery of new drugs. The Medicines for Malaria Venture have compounds known for their antimalarial ac- tivity, but not necessarily the molecular targets. In this study, we assess the ability of the “MMV 400” compounds to inhibit the activity of three metalloaminopeptidases from Plasmo- dium falciparum, PfA-M1, PfA-M17 and PfM18 AAP. We have developed a multiplex assay system to allow rapid primary screening of compounds against all three metalloaminopepti- dases, followed by detailed analysis of promising compounds. Our results show that there were no PfM18AAP inhibitors, whereas two moderate inhibitors of the neutral aminopepti- dases PfA-M1 and PfA-M17 were identified. Further investigation through structure-activity relationship studies and molecular docking suggest that these compounds are competitive inhibitors with novel binding mechanisms, acting through either non-classical zinc coordina- tion or independently of zinc binding altogether. Although it is unlikely that inhibition of PfA- M1 and/or PfA-M17 is the primary mechanism responsible for the antiplasmodial activity re- ported for these compounds, their detailed characterization, as presented in this work, pave the way for their further optimization as a novel class of dual PfA-M1/PfA-M17 inhibitors uti- lising non-classical zinc binding groups

    Hormonal control of p53 and chemoprevention

    Get PDF
    Improvements in the detection and treatment of breast cancer have dramatically altered its clinical course and outcome. However, prevention of breast cancer remains an elusive goal. Parity, age of menarche, and age at menopause are major risk factors drawing attention to the important role of the endocrine system in determining the risk of breast cancer, while heritable breast cancer susceptibility syndromes have implicated tumor suppressor genes as important targets. Recent work demonstrating hormonal modulation of the p53 tumor suppressor pathway draws together these established determinants of risk to provide a model of developmental susceptibility to breast cancer. In this model, the mammary epithelium is rendered susceptible due to impaired p53 activity during specific periods of mammary gland development, but specific endocrine stimuli serve to activate p53 function and to mitigate this risk. The results focus attention on p53 as a molecular target for therapies to reduce the risk of breast cancer
    • …
    corecore