36 research outputs found
APC/C – the master controller of origin licensing?
DNA replication must be tightly controlled to prevent initiation of a second round of replication until mitosis is complete. So far, components of the pre-replicative complex (Cdt1, Cdc6 and geminin) were considered key players in this regulation. In a new study, Machida and Dutta have shown that depletion of Emi1 caused cells to replicate their DNA more than once per cell cycle [1]. This effect was dependent on the ability of Emi1 to inhibit the APC/C. In addition to its role in regulating entry into mitosis, oscillation of APC/C activity regulates pre-RC formation: high APC/C activity in late M/G1 allows pre-RC formation and low APC/C activity in S/G2 prevents pre-RC formation for a second time thereby preventing rereplication. Each redundant pathway to prevent rereplication is dependent on regulating one of the pre-RC components, and all of the pathways are co-regulated by Emi1 through the APC/C. In this commentary we discuss how this new role of Emi1 adds to our understanding of the regulation of replication initiation. We also review the literature to analyze whether APC/C has a role in regulating endoreduplication (a normal state of polyploidy in some differentiated cells). Similarly a role of premature APC/C activation in genomic instability of tumors is discussed
Oral human papillomavirus is common in individuals with Fanconi anemia
Fanconi anemia is a rare genetic disorder resulting in a loss of function of the Fanconi anemia-related DNA repair pathway. Individuals with Fanconi anemia are predisposed to some cancers, including oropharyngeal and gynecologic cancers, with known associations with human papillomavirus (HPV) in the general population. As individuals with Fanconi anemia respond poorly to chemotherapy and radiation, prevention of cancer is critical.
METHODS:
To determine whether individuals with Fanconi anemia are particularly susceptible to oral HPV infection, we analyzed survey-based risk factor data and tested DNA isolated from oral rinses from 126 individuals with Fanconi anemia and 162 unaffected first-degree family members for 37 HPV types.
RESULTS:
Fourteen individuals (11.1%) with Fanconi anemia tested positive, significantly more (P = 0.003) than family members (2.5%). While HPV prevalence was even higher for sexually active individuals with Fanconi anemia (17.7% vs. 2.4% in family; P = 0.003), HPV positivity also tended to be higher in the sexually inactive (8.7% in Fanconi anemia vs. 2.9% in siblings). Indeed, having Fanconi anemia increased HPV positivity 4.9-fold (95% CI, 1.6-15.4) considering age and sexual experience, but did not differ by other potential risk factors.
CONCLUSION:
Our studies suggest that oral HPV is more common in individuals with Fanconi anemia. It will be essential to continue to explore associations between risk factors and immune dysfunction on HPV incidence and persistence over time.
IMPACT:
HPV vaccination should be emphasized in those with Fanconi anemia as a first step to prevent oropharyngeal cancers, although additional studies are needed to determine whether the level of protection it offers in this population is adequate
Identification of KIF3A as a Novel Candidate Gene for Childhood Asthma Using RNA Expression and Population Allelic Frequencies Differences
Asthma is a chronic inflammatory disease with a strong genetic predisposition. A major challenge for candidate gene association studies in asthma is the selection of biologically relevant genes.Using epithelial RNA expression arrays, HapMap allele frequency variation, and the literature, we identified six possible candidate susceptibility genes for childhood asthma including ADCY2, DNAH5, KIF3A, PDE4B, PLAU, SPRR2B. To evaluate these genes, we compared the genotypes of 194 predominantly tagging SNPs in 790 asthmatic, allergic and non-allergic children. We found that SNPs in all six genes were nominally associated with asthma (p<0.05) in our discovery cohort and in three independent cohorts at either the SNP or gene level (p<0.05). Further, we determined that our selection approach was superior to random selection of genes either differentially expressed in asthmatics compared to controls (p = 0.0049) or selected based on the literature alone (p = 0.0049), substantiating the validity of our gene selection approach. Importantly, we observed that 7 of 9 SNPs in the KIF3A gene more than doubled the odds of asthma (OR = 2.3, p<0.0001) and increased the odds of allergic disease (OR = 1.8, p<0.008). Our data indicate that KIF3A rs7737031 (T-allele) has an asthma population attributable risk of 18.5%. The association between KIF3A rs7737031 and asthma was validated in 3 independent populations, further substantiating the validity of our gene selection approach.Our study demonstrates that KIF3A, a member of the kinesin superfamily of microtubule associated motors that are important in the transport of protein complexes within cilia, is a novel candidate gene for childhood asthma. Polymorphisms in KIF3A may in part be responsible for poor mucus and/or allergen clearance from the airways. Furthermore, our study provides a promising framework for the identification and evaluation of novel candidate susceptibility genes
Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection
The molecular mechanisms that drive mucosal T helper type 2 (T[subscript H]2) responses against parasitic helminths and allergens remain unclear. In this study, we demonstrate in mice that TFF2 (trefoil factor 2), an epithelial cell–derived repair molecule, is needed for the control of lung injury caused by the hookworm parasite Nippostrongylus brasiliensis and for type 2 immunity after infection. TFF2 is also necessary for the rapid production of IL-33, a T[subscript H]2-promoting cytokine, by lung epithelia, alveolar macrophages, and inflammatory dendritic cells in infected mice. TFF2 also increases the severity of allergic lung disease caused by house dust mite antigens or IL-13. Moreover, TFF2 messenger RNA expression is significantly increased in nasal mucosal brushings during asthma exacerbations in children. These experiments extend the biological functions of TFF2 from tissue repair to the initiation and maintenance of mucosal T[subscript H]2 responses
Multiple Transcriptome Data Analysis Reveals Biologically Relevant Atopic Dermatitis Signature Genes and Pathways
<div><p>Several studies have identified genes that are differentially expressed in atopic dermatitis (AD) compared to normal skin. However, there is also considerable variation in the list of differentially expressed genes (DEGs) reported by different groups and the exact cause of AD is still not fully understood. Using a rank-based approach, we analyzed gene expression data from five different microarray studies, comprising a total of 127 samples and more than 250,000 transcripts. A total of 89 AD gene expression signatures ‘89ADGES’, including <i>FLG</i> gene, were identified to show <i>dysregulation</i> consistently across these studies. Using a Support Vector Machine, we showed that the ‘89ADGES’ discriminates AD from normal skin with 98% predictive accuracy. Functional annotation of these genes implicated their roles in immune responses (e.g., betadefensin, microseminoprotein), keratinocyte differentiation/epidermal development (e.g., <i>FLG</i>, <i>CORIN</i>, <i>AQP</i>, <i>LOR</i>, <i>KRT16</i>), inflammation (e.g., <i>IL37</i>, <i>IL27RA</i>, <i>CCL18</i>) and lipid metabolism (e.g., <i>AKR1B10</i>, <i>FAD7</i>, <i>FAR2</i>). Subsequently, we validated a subset of signature genes using quantitative PCR in a mouse model. Using a bioinformatic approach, we identified keratinocyte pathway over-represented (P = <0.0006) among the 89 signature genes. Keratinocytes are known to play a major role in barrier function due to their location in the epidermis. Our result suggests that besides immune- mediated pathway, skin barrier pathways such as the keratinocyte differentiation pathway play a key role in AD pathogenesis. A better understanding of the role of keratinocytes in AD will be important for developing novel “barrier therapy” for this disease.</p></div
Analysis of the ‘89ADEGs’ with the ACUMENTA literature lab demonstrated an enriched of the keratinocyte differentiation pathway.
<p>Keratinocytes are known to play a major role in barrier function in AD due to their location in the epidermis. DEGs associated with the keratinocyte differentiation pathway have been shown. The biological functions of these genes were related to cellular movement, barrier functions, signaling as well as cellular development and function. The genes making the strongest contribution are shown in the inner ring starting at the 12 o’clock position and descending in a clockwise direction and outward in the order of contribution to the association to keratinocyte differentiation pathway. Thus <i>LOR</i> accounts for the largest share of the gene set's association with the keratinocyte differentiation pathway, followed by <i>FLG</i> then <i>KRT16</i> and so on. The gene in this diagram contributing the least to the gene set's association with the keratinocyte differentiation pathway is <i>AOP9</i>.</p