24 research outputs found
Biohydrogen Production from Wastewaters
Biohydrogen production technology is an emerging field for the advanced wastewater treatment with cogeneration of energy. Besides, hydrogen is an excellent candidate with high energy value (122 kJ/g) than other known carbon‐based fuels with no adverse effects to the environment as it releases only water vapor as the by‐products during the combustion. Biohydrogen production technology can be assisted through two major pathways: (a) light‐dependent reaction (biophotolysis and photofermentation) and (b) light‐independent reaction (dark fermentation and microbial electrohydrogenesis cells). The light‐dependent reaction can be catalyzed by photosynthetic bacteria, whereas the dark fermentation catalyzed by the heterotrophic bacterial group of facultative and obligate anaerobes. The wastewaters are a rich source of organic nutrients which supports the growth of hydrogen producers along with the disposal of waste and energy recovery. In the present chapter, the recent advancements on biohydrogen production technology from wastewaters with respect to the (a) inoculum development, (b) process optimization, (c) scale‐up and (d) the challenges and perspectives toward the improvement of this emerging technology for the wastewater treatment
Microbial electrochemical systems for sustainable biohydrogen production: Surveying the experiences from a start-up viewpoint
The start-up of microbial electrohydrogenesis cells (MECs) is a key-step to realize efficient biohydrogen generation and adequate, long-term operation. This review paper deals with the lessons and experiences reported on the most important aspects of H2 producing MEC start-up. The comprehensive survey covers the assessment and discussion of the main influencing factors and methods (e.g. inocula selection, enrichment, acclimation, operating conditions and cell architecture) that assist the design of MECs. This work intends to be a helpful guide for the interested readers about the strategies employed to successfully establish microbial electrochemical cells for sustainable biohydrogen production
Continuous micro-current stimulation to upgrade methanolic wastewater biodegradation and biomethane recovery in an upflow anaerobic sludge blanket (UASB) reactor
The dispersion of granules in upflow anaerobic sludge blanket (UASB) reactor represents a critical technical issue in methanolic wastewater treatment. In this study, the potentials of coupling a microbial electrolysis cell (MEC) into an UASB reactor for improving methanolic wastewater biodegradation, long-term process stability and biomethane recovery were evaluated. The results indicated that coupling a MEC system was capable of improving the overall performance of UASB reactor for methanolic wastewater treatment. The combined system maintained the comparatively higher methane yield and COD removal efficiency over the single UASB process through the entire process, with the methane production at the steady-state conditions approaching 1504.7 ± 92.2 mL-CH4 L−1-reactor d−1, around 10.1% higher than the control UASB (i.e. 1366.4 ± 71.0 mL-CH4 L−1-reactor d−1). The further characterizations verified that the input of external power source could stimulate the metabolic activity of microbes and reinforced the EPS secretion. The produced EPS interacted with Fe2+/3+ liberated during anodic corrosion of iron electrode to create a gel-like three-dimensional [-Fe-EPS-]n matrix, which promoted cell-cell cohesion and maintained the structural integrity of granules. Further observations via SEM and FISH analysis demonstrated that the use of bioelectrochemical stimulation promoted the growth and proliferation of microorganisms, which diversified the degradation routes of methanol, convert the wasted CO2 into methane and accordingly increased the process stability and methane productivity
Bioelectrochemical systems using microalgae − A concise research update
Excess consumption of energy by humans is compounded by environmental pollution, the greenhouse effect and climate change impacts. Current developments in the use of algae for bioenergy production offer several advantages. Algal biomass is hence considered a new bio−material which holds the promise to fulfil the rising demand for energy. Microalgae are used in effluents treatment, bioenergy production, high value added products synthesis and CO2 capture. This review summarizes the potential applications of algae in bioelectrochemically mediated oxidation reactions in fully biotic microbial fuel cells for power generation and removal of unwanted nutrients. In addition, this review highlights the recent developments directed towards developing different types of microalgae MFCs. The different process factors affecting the performance of microalgae MFC system and some technological bottlenecks are also addressed
A review of research trends in the enhancement of biomass-to-hydrogen conversion
Different types of biomass are being examined for their optimum hydrogen production potentials and actual hydrogen yields in different experimental set-ups and through different chemical synthetic routes. In this review, the observations emanating from research findings on the assessment of hydrogen synthesis kinetics during fermentation and gasification of different types of biomass substrates have been concisely surveyed from selected publications. This review revisits the recent progress reported in biomass-based hydrogen synthesis in the associated disciplines of microbial cell immobilization, bioreactor design and analysis, ultrasound-assisted, microwave-assisted and ionic liquid-assisted biomass pretreatments, development of new microbial strains, integrated production schemes, applications of nanocatalysis, subcritical and supercritical water processing, use of algae-based substrates and lastly inhibitor detoxification. The main observations from this review are that cell immobilization assists in optimizing the biomass fermentation performance by enhancing bead size, providing for adequate cell loading and improving mass transfer; there are novel and more potent bacterial and fungal strains which improve the fermentation process and impact on hydrogen yields positively; application of microwave irradiation and sonication and the use of ionic liquids in biomass pretreatment bring about enhanced delignification, and that supercritical water biomass processing and dosing with metal-based nanoparticles also assist in enhancing the kinetics of hydrogen synthesis. The research areas discussed in this work and their respective impacts on hydrogen synthesis from biomass are arguably standalone. Thence, further work is still required to explore the possibilities and techno-economic implications of combining these areas for developing robust and integrated biomass-to-hydrogen synthetic schemes
Microbiome involved in anaerobic hydrogen producing granules: A mini review
This mini review overviewed the latest updates on the anaerobic hydrogen fermentation using the granulation technology and the microbiome involved in the process. Additionally, the implication of various reactor design and their microbial changes were compared and provided the new insights on the role of microbiomes for rapid granules formation and long term stable operation in a continuous mode operation. The information provided in this communication would help to understand the key role of microbiomes and their importance in anaerobic hydrogen producing granular systems. Keywords: Aggregation, Biofilm, Biogranules, Bioreactor, Clostridium, Granulation, Self-flocculatio
An efficient and cost- effective pretreatment of rice straw using steam explosion : a pilot scale experience
publishedVersio
Improved microbial conversion of de-oiled Jatropha waste into biohydrogen via inoculum pretreatment: process optimization by experimental design approach
In this study various pretreatment methods of sewage sludge inoculum and the statistical process optimization of de-oiled jatropha waste have been reported. Peak hydrogen production rate (HPR) and hydrogen yield (HY) of 0.36 L H2/L-d and 20 mL H2/g Volatile Solid (VS) were obtained when heat shock pretreatment (95 oC, 30 min) was employed. Afterwards, an experimental design was applied to find the optimal conditions for H2 production using heat-pretreated seed culture. The optimal substrate concentration, pH and temperature were determined by using response surface methodology as 205 g/L, 6.53 and 55.1 oC, respectively. Under these circumstances, the highest HPR of 1.36 L H2/L-d was predicted. Verification tests proved the reliability of the statistical approach. As a result of the heat pretreatment and fermentation optimization, a significant (~ 4 folds) increase in HPR was achieved. PCR-DGGE results revealed that Clostridium sp. were majorly present under the optimal conditions
A review of research trends in the enhancement of biomass-to-hydrogen conversion
Different types of biomass are being examined for their optimum hydrogen production potentials and actual hydrogen yields in different experimental set-ups and through different chemical synthetic routes. In this review, the observations emanating from research findings on the assessment of hydrogen synthesis kinetics during fermentation and gasification of different types of biomass substrates have been concisely surveyed from selected publications. This review revisits the recent progress reported in biomass-based hydrogen synthesis in the associated disciplines of microbial cell immobilization, bioreactor design and analysis, ultrasound-assisted, microwave-assisted and ionic liquid-assisted biomass pretreatments, development of new microbial strains, integrated production schemes, applications of nanocatalysis, subcritical and supercritical water processing, use of algae-based substrates and lastly inhibitor detoxification. The main observations from this review are that cell immobilization assists in optimizing the biomass fermentation performance by enhancing bead size, providing for adequate cell loading and improving mass transfer; there are novel and more potent bacterial and fungal strains which improve the fermentation process and impact on hydrogen yields positively; application of microwave irradiation and sonication and the use of ionic liquids in biomass pretreatment bring about enhanced delignification, and that supercritical water biomass processing and dosing with metal-based nanoparticles also assist in enhancing the kinetics of hydrogen synthesis. The research areas discussed in this work and their respective impacts on hydrogen synthesis from biomass are arguably standalone. Thence, further work is still required to explore the possibilities and techno-economic implications of combining these areas for developing robust and integrated biomass-to-hydrogen synthetic schemes