9 research outputs found

    Advances in pre-treatment techniques and green extraction technologies for bioactives from seaweeds

    Get PDF
    peer-reviewedBackgroundA wide range of conventional and non-conventional technologies have been employed to extract a wide range of bioactive compounds from the complex matrices of seaweeds. Green extraction technologies are increasingly employed to improve extraction efficiencies. Scope and approachThe objective of this review was to outline various approaches employed for the extraction of bioactives from seaweeds. This review covers various pretreatment methods generally employed prior to extraction, and their combinations with conventional and green extraction technologies. Novel technologies which can be employed with or without pretreatments to improve existing processes are also discussed. Key findingsThe role of pretreatments is of utmost importance and have significant impacts on the quality and quantity of target compounds. Combinations of different cell disruption technologies and extraction methods can enhance the extractability of compounds with higher purity and contribute towards improved process efficiency

    Influence of Molecular Weight Fractionation on the Antimicrobial and Anticancer Properties of a Fucoidan Rich-Extract From The Macroalgae Fucus Vesiculosus

    Get PDF
    The objective of this study was to investigate the antimicrobial and anticancer properties of a fucoidan extract and subsequent fractions isolated from the macroalgae Fucus vesiculosus. The fractions obtained (\u3e300 kDa,kDa,kDa,kDa) could inhibit the growth of B. subtilis, E. coli, L. innocua and P. fluorescens when assayed at concentrations between 12,500 and 25,000 ppm. The bacterial growth was monitored by optical density (OD) measurements (600 nm, 24 h) at 30 °C or 37 °C, depending upon on the strain used. The extracted fractions were also tested for cytotoxicity against brain glioblastoma cancer cells using the Alamar Blue assay for 24 h, 48 h and 6 days. The \u3e300 kDa fraction presented the lowest IC50 values (0.052% - 24 h; 0.032% - 6 days). The potential bioactivity of fucoidan as an antimicrobial and anticancer agent was demonstrated in this study. Hence, the related mechanisms of action should be explored in a near future

    Physical and functional properties of tunicate (Styela clava) hydrolysate obtained from pressurized hydrothermal process

    No full text
    Abstract In this study, marine tunicate Styela clava hydrolysate was produced by an environment friendly and green technology, pressurized hot water hydrolysis (PHWH) at different temperatures (125–275 °C) and pressure 50 bar. A wide range of physico-chemical and bio-functional properties such as color, pH, protein content, total carbohydrate content, reducing sugar content, and radical scavenging activities of the produced hydrolysates were evaluated. The appearance (color) of hydrolysates varied depending on the temperature; hydrolysates obtained at 125–150 °C were lighter, whereas at 175 °C gave reddish-yellow, and 225 °C gave dark brown hydrolysates. The L* (lightness), a* (red–green), and b* (yellow–blue) values of the hydrolysates varied between 35.20 and 50.21, −0.28 and 9.59, and 6.45 and 28.82, respectively. The pH values of S. clava hydrolysates varied from 6.45 (125 °C) to 8.96 (275 °C) and the values were found to be increased as the temperature was increased. The hydrolysis efficiency of S. clava hydrolysate was ranged from 46.05 to 88.67% and the highest value was found at 250 °C. The highest protein, total carbohydrate content, and reducing sugar content of the hydrolysates were found 4.52 mg/g bovine, 11.48 mg/g and 2.77 mg/g at 175, and 200 and 200 °C, respectively. Hydrolysates obtained at lower temperature showed poor radical scavenging activity and the highest DPPH, ABTS, and FRAP activities were obtained 10.25, 14.06, and 10.91 mg trolox equivalent/g hydrolysate (dry matter basis), respectively. Therefore, S. clava hydrolysate obtained by PHWH at 225–250 °C and 50 bar is recommended for bio-functional food supplement preparation

    The development of analytical methods for the purity determination of fucoidan extracted from brown seaweed species

    Get PDF
    To determine the purity of extracted fucoidan from brown seaweeds, analytical methods were developed, including spectroscopy (i.e., Attenuate total reflectance (ATR) - Fourier-transform infrared (FT-IR) and Raman) combined with chemometrics; and the results were compared with those of high performance liquid chromatography (HPLC) and other two chemistry methods (i.e., fucoidan estimation based on fucose content and a cationic dye method based on sulphated polysaccharide estimation). Quantitative models (i.e., partial least squares regression (PLSR)) were developed and cross-validated using FT-IR spectroscopic methods (R2CV ~ 0.998, RMSECV ~1.7%). The models were also validated using other four commercial fucoidan products. On the other hand, the same commercial samples were used to validate the two chemistry methods and the HPLC method. Estimation results of these analytical methods were discussed based on the potential of these analytical methods for fucoidan purity determination. The results demonstrated FT-IR spectroscopy with chemometrics potentially could be used for non-destructive and real time determination.European Commission - European Regional Development FundScience Foundation Irelan

    Biological Properties of Fucoxanthin in Oil Recovered from Two Brown Seaweeds Using Supercritical CO2 Extraction

    No full text
    The bioactive materials in brown seaweeds hold great interest for developing new drugs and healthy foods. The oil content in brown seaweeds (Saccharina japonica and Sargassum horneri) was extracted by using environmentally friendly supercritical CO2 (SC-CO2) with ethanol as a co-solvent in a semi-batch flow extraction process and compared the results with a conventional extraction process using hexane, ethanol, and acetone mixed with methanol (1:1, v/v). The SC-CO2 method was used at a temperature of 45 °C and pressure of 250 bar. The flow rate of CO2 (27 g/min) was constant for the entire extraction period of 2 h. The obtained oil from the brown seaweeds was analyzed to determine their valuable compounds such as fatty acids, phenolic compounds, fucoxanthin and biological properties including antioxidant, antimicrobial, and antihypertension effects. The amounts of fucoxanthin extracted from the SC-CO2 oils of S. japonica and S. horneri were 0.41 ± 0.05 and 0.77 ± 0.07 mg/g, respectively. High antihypertensive activity was detected when using mixed acetone and methanol, whereas the phenolic content and antioxidant property were higher in the oil extracted by SC-CO2. The acetone–methanol mix extracts exhibited better antimicrobial activities than those obtained by other means. Thus, the SC-CO2 extraction process appears to be a good method for obtaining valuable compounds from both brown seaweeds, and showed stronger biological activity than that obtained by the conventional extraction process

    Conventional extraction of fucoidan from Irish brown seaweed Fucus vesiculosus followed by ultrasound-assisted depolymerization

    No full text
    Abstract Fucoidan has attracted considerable attention from scientists and pharmaceutical companies due to its antioxidant, anticoagulant, anti-inflammatory, anti-tumor, and health-enhancing properties. However, the extraction of fucoidan from seaweeds often involves the use of harsh chemicals, which necessitates the search for alternative solvents. Additionally, the high viscosity and low cell permeability of high molecular weight (Mw) fucoidan can limit its effectiveness in drug action, while lower Mw fractions exhibit increased biological activity and are also utilized as dietary supplements. The study aimed to (1) extract fucoidan from the seaweed Fucus vesiculosus (FV) using an environmentally friendly solvent and compare it with the most commonly used extraction solvent, hydrochloric acid, and (2) assess the impact of ultrasound-assisted depolymerization on reducing the molecular weight of the fucoidan extracts and examine the cytotoxic effect of different molecular weight fractions. The findings indicated that the green depolymerization solvent, in conjunction with a brief ultrasound treatment, effectively reduced the molecular weight. Moreover, a significant decrease in cell viability was observed in selected samples, indicating potential anticancer properties. As a result, ultrasound was determined to be an effective method for depolymerizing crude fucoidan from Fucus Vesiculosus seaweed
    corecore