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Abstract

Background:A wide range of conventional and non-conventicreahnologies have been
employed to extract a wide range of bioactive conmgs from the complex matrices of
seaweeds. Green extraction technologies are inoghaemployed to improve extraction

efficiencies.

Scope and approachThe objective of this review was to outline vasoapproaches

employed for the extraction of bioactives from seads. This review covers various
pretreatment methods generally employed prior te #xtraction process, and their
combinations with conventional and green extractemmnologies. Novel technologies which
can be employed with or without pretreatments trowe existing processes are also

discussed.

Key findings:The role of pretreatments is of utmost importaaee have significant impacts
on the quality and quantity of target compoundshe Tcombinations of different cell
disruption technologies and extraction methodsesamance the extractability of compounds

with higher purity and contribute towards improyedcess efficiency.

Keywords: Cell disruption, pre-treatment, green extraction tehnologies, bioactives,

seaweed

1. Introduction

Over the last decades, there has been an incraasedness of the impact of diet on health,
which has led to various changes in diet and tiveldpment of functional foods, which are
capable of providing health benefits beyond theithomal value (Nowak, Livney, Niu, &
Singh, 2019). The globalization of the food indydtas seen a rise in demand for functional
foods to meet the needs of the consumers (AdadgkBaa, Muravyov, & Krivoshapkina,
2019). The revenue generated worldwide by the fonat food market in 2019 was about
175 billion U.S. dollars and is projected to rea2R5 billion U.S. dollars by 2025
(Shahbandeh, 2019).

Functional foods are defined as whole, fortified, enriched with bioactives foods that
provide health benefits beyond essential nutrifesg. vitamins, minerals), when consumed
at sufficient levels as a part of a regular dieip{@ck, et al., 1999). Bioactive compounds

play a pivotal role in the development of functibfteods. Bioactive compounds are essential



64
65
66
67

68
69
70
71

72
73
74

75
76
77
78
79

80
81
82
83
84
85
86
87
88

89
90
91
92
93

and nonessential compounds (e.g., vitamins or pelypls) that occur in nature which can be
shown to affect human health (Biesalski, et alJ@0A range of bioactive compounds can
be obtained from both terrestrial and marine pldotsa wide range of functional food
applications (Chakraborty, et al., 2018; Qin, 2018)

For example, deep-coloured vegetables includingotared beetroot, eggplant (Vinson,
Hao, Su, & Zubik, 1998), mangrove trees (Dahibh&addhe, & Kumar, 2019), tea (da
Silva, et al., 2017), berry fruits (Szajdek & Baska, 2008) are rich in bioactive compounds

which display strong antioxidant capacity.

Among marine plants, seaweeds contain many bigactempounds and functional
carbohydrates including carrageenan, terpenoidsyupsaturated fatty acids, sulphated

polysaccharides and fucoidan (Smit, 2004).

These secondary metabolites display a wide rangbiazctivities including antioxidant,
antidiabetic, anticancer, anti-HIV, antiviral, awagulant, anti-inflammatory and
cardiovascular protection. Bioactive compounds fiseaweeds are considered to be natural
and safe, and have potential application in natrél supplements or therapeutic agents
(Khalid, Abbas, Saeed, Bader-Ul-Ain, & Suleria, 801

A key challenge faced in obtaining bioactives fregaweed is the low recovery rates for
these compounds, which is further limited by thgdity of the seaweed matrix which retards
the release of bioactive substances (Poojary,,e2@l6). The composition of the cell-matrix
also has a key effect on the disruption efficiemry yield of the functional compounds
(Ciko$, Joké, Subaré, & Jerkovi, 2018). Selection of an appropriate pretreatmerted
disruption technique is dependent on the targeddbive compound and seaweed matrix. To
overcome these challenges, a suitable pretreatmerthod before extraction or the
application of novel technologies can be employedehhance the recovery of target

compounds.

A biorefinery approach is required to achieve soatade exploitation of seaweeds, and
convert the seaweed biomass into a wide rangeghf Yelue-added products which can be
further exploited by the pharmaceutical and alBedtors (Serive, Kaas et al. 2012). Multiple
bioactive compounds such as fucoxanthin, zeaxanthooidan, violaxanthin , laminarin,

phlorotannins, lutein, glycoprotein etc can beaot#d from seaweeds (Bikker, et al., 2016).
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Temperature sensitive bioactives such as carotermmwigolyphenols extracted from seaweeds
must be carefully handled during downstream praogs® ensure that the process does not

have any negative effects on their functional prope.

This review considers the relevance of pretreatsmantl novel technologies to enhance the
extraction of bioactives from seaweed, and outlitesrange of unit operations involved in

extraction processes including pre-treatment tephes.
2. Extraction of bioactive compounds

Naturally occurring bioactive compounds are syn#teskin small amounts and are extracted
along with other compounds during extraction, whcehkes their subsequent separation and
purification time consuming and labour intensivearfl, 2007). These compounds are
generally embedded in the cellular matrices aloith wmacromolecules (e.g. protein, fibre)
and are difficult to extract. Extraction is a masssfer process which is mainly dependent
on the accessibility of target bioactive compouridsthe solvent. Extraction involves
diffusion of the solvent into the matrix, followdxy the dissolution of bioactive compounds
into the solvent, and separation of bioactive conmgis from the solvent. Strategies adopted
to enhance extraction yields with intact biologiaativities are well documented and include
the use of classical and novel disruption techréquéarious cell disruption methods
including mechanical, thermal and/or chemicals wsed to enhance the mass transfer and

thereby enhance the extraction yield (Romero-Degeal., 2019).

Conventional extraction methods employed depenthercharacteristics of the solvent used
(viscosity, polarity, surface tension, dipole momend dielectric constant), thermal
treatment and mechanical agitation/mixing. Theseethods include Soxhlet,
hydrodistillation, maceration (Azmir, et al., 2013pnfusion, digestion, decoction and
percolation (Belwal, et al., 2018) which may inw®lan alcohol-water mixture or non-polar
solvent (Wang & Weller, 2006). The extraction mettemployed affects the qualitative (e.g.
biological activities) and quantitative (e.g. yipldharacteristics of bioactive compounds.
Thus, it is critical to select the most approprisdéent and extraction technique based on the
target bioactive compound and proposed end apiaiicétfable 1).

It is desirable to use safe, affordable, and ecodb@xtraction techniques to extract bioactive
compounds sustainably and efficiently. This willt manly enhance yields with minimal

impact on the quality of end product but also compith clean label requirements (Kadam,
Tiwari, Smyth, & O’'Donnell, 2015). It is also imgant that only food grade solvents are
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used if the target bioactive compounds are to lael digr functional food applications. The

use of green solvents obtained from renewable ressuhas been proposed to replace
hazardous solvents (e.g. petroleum derived solyentbese solvents include water,

subcritical and supercritical fluids, deep eutestidvents and ionic liquids (Gomez, et al.,

2020).

Use of green solvents and novel extraction teclgiesohave led to the development of the
concept of green extraction, which is based on diseovery and design of extraction
processes which will reduce energy consumptioowallthe use of alternative solvents and
renewable natural products, and ensure a safe midduality extract/product (Chemat,
Vian, & Cravotto, 2012).

Several novel extraction technologies, includingcnmivave-assisted extraction (MAE),
ultrasound assisted extraction (UAE), enzyme-assisixtraction (EAE), supercritical fluid
extraction (SFE) and pressurized liquid extracti®LE) have been employed for the
extraction of a range of bioactive compounds indfas well as in the pharmaceutical
applications (Kadam, Tiwari, Smyth, & O’Donnell, Z%).

These technologies facilitate the elimination oduion of the use of toxic chemical
solvents, enhance extraction efficiency as welyiatd and quality of the extract obtained.
They also reduce the extraction time and are lessgg intensive. These novel extraction
technologies can be classified as physical, chdmitalogical and combinations of same
(e.g. biochemical) as shown in Fig. 1. For examplgssical extraction techniques include
pretreatments such as milling, drying, puffingtreding and mechanical pressing, followed
by extraction processes such as heating, ultraston; microwave assisted extraction, sub-
and supercritical fluid extraction and pressuridepid extraction. Chemical extraction
techniques include the use of organic and inorgawilvents, ionic liquids, etc while

biological extraction involves the use of enzymed microorganisms.

3. Seaweeds as a source of bioactive compounds

Seaweeds have been widely used as a functional daddmedicinal herbs particularly in
Asian countries (Liu, Heinrich, Myers, & Dworjanyr£012), however their potential
importance has increased over the over the lastdégscdue to the global population growth
and food security becoming an emerging issue (Rada&tri, 2006). The world production
of seaweed has grown exponentially over the lasyezl’s (Loureiro, Gachon, & Rebours,

5
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2015). Seaweeds are increasingly employed in tbmdilicine and agri-food industries as
they are a rich source of bioactive compounds dioly carotenoids, proteins, peptides,
vitamins, minerals, oxylipins, phlorotannins, stds) minerals, essential fatty acids, dietary
fibres, polysaccharides and sulphated polysacobsr({Yenkatesan, et al., 2019). Dietary
antioxidants help in reducing oxidative damage ahtbnic disease risks related to them,
and also interferes with signal transduction retyaat various levels including inhibiting
oncogenes, activating cancer cell death also knasvapoptosis, decreasing inflammation,
inhibiting angiogenesis and modulating hormonerongh factor activities (Russo, 2007).

Seaweeds are a good source of antioxidants (Nagéailkdmoto, 2003). The main potential
antioxidant compounds identified in seaweeds irelptgments (astaxanthin, carotenoids,
fucoxanthin) and polyphenols (phenolic acid, flavioh) tannins, etc), which are known for
their high antioxidative activities (Siriwardharet, al., 2004). The phenolic compounds are
among the most abundant secondary metabolites alt$twdied antioxidantsn vivo andin
vitro in terrestrial plants and exhibit antioxidant aitiés by inducing antioxidant enzymes
and by scavenging radicals (Kadam, Tiwari, & O’Delhn 2013). These along with
carotenoids, vitamin C and E, are referred to amx@adants, and protect against oxidative
stress and associated pathologies such as inflaoomaiancer and coronary heart disease
(Tapiero, Tew, Ba, & Mathe, 2002). Phlorotannirns another important bioactive compound
found in seaweeds are 10-100 times more stablepateht antioxidants than any other
polyphenols (Namvar, et al., 2012).

4. Extraction process

Recently use of new extraction technologies atouariextraction stages has been reported.
The stages at which these technologies are emplugeel a strong effect on extraction time,
energy consumption, yield and bioactivity/functibtyaof the target compound. The use of
extraction technologies as a pretreatment of sehvili@mass or as the main extraction
technique alone or in combination with conventionalother novel technology with and

without green solvents is shown in Fig. 2.

4.1 Pretreatment techniques

Pretreatment of biomass is one of the most comnubtebst investigated unit operation and
is often considered as an extraction technique-treaéments have a crucial role in the
extraction of compounds and bioconversion procegdlishalak & Chojnacka, 2014)

6
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Pretreatments of biomass have been reported toeatbe availability of target compounds
in extraction of bioactives (Billakanti, Catchpolegnton, Mitchell, & MacKenzie, 2013),
microbial hydrolysis for biogas production (Thomps&oung, & Baroutian, 2019) and the
production of fermentable sugars (Yun, et al., 30X%everal conventional pretreatment
techniques including physical, chemical and biatagi and application of emerging

technologies to disrupt the cell matrix and tolftatie mass transfer are outlined below.
4.1.1 Conventional pretreatment techniques

Conventional physical pretreatment methods inclgdiot air drying and milling are
generally employed to modify the permeability o tbell membranes and accelerate mass
transfer in seaweed. Drying not only helps in tttgage and transportation of the seaweeds
but also impacts the extractability of bioactivempmunds and their quality. The most
commonly employed drying methods include solarmyyihot air drying, and freeze drying.
However drying requires significant amounts of gyeand may cause losses of certain
valuable compounds and nutritional attributes (CitenRombaut, Meullemiestre, et al.,
2017). (Chan, Cheung, & Ang, 1997) reported thatwarious methods of drying including
solar drying, oven drying and freeze drying greaffected the nutritional composition
(amino acids, vitamin C, minerals and fatty aciofsyargassum hemiphyllurAnother study
reported that different drying temperatures hadnapact on the phytochemicals present in
Himanthalia elongatdGupta, Cox, & Abu-Ghannam, 2011). Many similardss highlight
the effects of the drying methods employed and &atpre profile on the composition of

seaweeds.

Chemical pretreatments using acids, salts and tarfes have been employed for
disruption of seaweed cell walls followed by solvassisted extraction. For example most
fucoidan extraction processes involve a pretreatnusing ethanol to remove pigments,
proteins, mannitol and some salts (Yuan & Macqgear2015(b)). Studies have also been
reported for extraction of polysaccharides (Gaktdguero, Rajauria, O'doherty, & Sweeney,
2017) using alkaline pretreatment (Sasuga, Yamanbsikayama, Ono, & Mikami, 2017),
mild acid treatment (Sudhakar, Merlyn, ArunkumarP&rumal, 2016) and formalin (Cajnko,
Novak, & Likozar, 2019).

Biological techniques including fermentation and tise of enzymes are widely used
as a pretreatment for extraction. For example,ifpngduce a range of extracellular enzymes
that can breakdown seaweed polysaccharides intamod oligosaccharides. A study on
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fungal fermentation oPalisada perforata{ Rhodophyceae) and Sargassum seaweed species
by Gomaa, Hifney, Fawzy, Issa, and Abdel-Gawad %20&ported that along with the fungal
growth on the macroalgae, certain enzymes suchcaslinase and alginate lyase were found
with small amounts of protease and amylase. EnzZgmatetreatment of macroalgae
(Cystoseira trinodis using enzymes produced (fermentation broth) Dendryphiella
arenaria was shown by Hifney, Fawzy, Abdel-Gawad, and Gorf284.8) to increase the
recovery of low molecular weight fucoidan and a#gen and also enhance the antioxidant
potential.

4.1.2 Novel pretreatment techniques

Mechanical disruption methods alter seaweed aeittire and influence the extractability of
target compounds. Mechanical disruptfmetreatments lead to alterations of the biomals ce
structure, increase the surface area and peneti@tithe solvent into the matrices. However,
the use of harsh shear force, temperature andupeessnditions may not be suitable for
extraction of certain valuable components and e Ito their degradation. Mechanical
disruption pretreatments generally involve highrggeinput in the form of heat, pulses,
waves, and shear force, however this increasedygmeput may result in higher extraction
yields. Mechanical disruption pretreatments canubed alone or combined with other
pretreatments to improve extraction processes @guce energy use.

Mechanical disruption can be achieved by bead mgilli high-pressure
homogenization, and hydrodynamic cavitation. Bealling technique is a basic cell
disruption process which has been widely used #t lado and large plant scales due to its
high efficiency. Bead milling exposes samples t@adse moving with high speed which
disrupt the cells. In some cases, a stirrer ie aisluded, which agitates the sample and
makes it more efficient (Fig. 3a). The bead mik lh@en shown to facilitate the extraction of
lipids from both dried and wet microalgal cells (@iken, et al., 2015), which avoids drying
of microalgae cells for lipid extraction. In anethstudy, bead milling was shown to enhance
the extraction of protein frontJlva and Gracilaria seaweed compared to alkaline and
ultrasound treatment. Bead milling resulted inulicent content of protein yield compared
to other methods investigated with a condition aly8les of 60s with 6500 rpm and a break

of 120s between each cycle (Kazir, et al., 2019).

Compression puffing is another physical pretreatmesthod which modifies cellular
matrices by the simultaneous application of hedt@essure leading to the modification of

physicochemical properties. Compression puffingtrpegment ofSargassum glaucescens

8
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followed by hydrothermal extraction enhanced thigagtion of fucoidanlt was reported that
the disruption of cells that occurred during consgren puffing pretreatment improved the
extraction of fucoidan compared to hydrothermahtimeent alone (Huang, Wu, Yang, Kuan,
& Chen, 2016).

Application of novel technologies as a pretreatim@ior to drying e.g. ultrasound,
microwave, pulse electric field have been repottednhance process efficiency. Ultrasound
assisted drying ofAscophyllum nodosurhas been demonstrated to reduce drying time,
increase energy efficiency and improve colour ngébe (Kadam, Tiwari, & O'Donnell,
2015). In another study, ultrasound treatment uadenum (USV) was reported to accelerate
the dehydration rate d?haseolus vulgari¢Tekin, Balar, Karasu, & Kilicli, 2017). It was
reported to reduce the drying time by one hourasd showed higher phenolic compounds
compared to control samples. When ultrasound wagay®d as a pretreatment, followed by
acid/ alkali treatment, it resulted in a decreasthe extraction time for protein from seaweed
(Kadam, Alvarez, Tiwari, & O'Donnell, 2017). Ult@snd pretreatments have been reported

to enhance the extraction of compounds in sevardles (Table 1).

Use of microwaves as a pretreatment has been eeptot enhance extraction of
bioproducts. Alvarez, et al. (2017) reported thaticrowave pretreatments after
homogenization and prior to solid-liquid extractienhanced the extraction of polyphenols,
sugars and fibres, from grape pomace. They obsehatdhe polyphenol yield increased by
57% and that bioactivity was also enhanced. SitgilgtJquiche, Jeréz, & Ortiz, 2008)
reported that pretreatment using microwaves, faldwy pressing increased the extraction
yield of oil from Chilean hazelnut$sgevuina avellanavol). Microwave pretreatments for
240 s at 400 W enabled recovery of 45.3% of thi&ainoil content compared to 6.1% from
untreated samples. The enhanced recovery wasuiiti to the rupture of the cell walls by
microwaves, which facilitated the release of oiimlted studies have been reported on the
use of microwave pretreatments for extraction ofibtive compounds from seaweeds (Table
1). However, microwave pretreatments have been usedeaweed applications for
production of biogas (Montingelli, Benyounis, Stek& Olabi, 2016) and bioethanol (Yuan
& Macquarrie, 2015(c)).

Pulse electric field (PEF) pretreatments can akse@mployed to improve extraction
efficiencies in terms of yield and quality of thetract. Electroporation is the main
mechanism associated with disruption of cell memésdeading to the formation of pores in

cell membranes which increases permeability (Bry&nWolfe, 1987). This increased

9
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permeability facilitates the diffusion of solvemnto the cell membranes leading to enhanced
extraction of target compounds and reduced extractime (Toepfl, Mathys, Heinz, &
Knorr, 2006). Vorobiev and Lebovka (2015) reportdtht PEF pretreatment before
mechanical expression in fruit juice from solid dsosuch as rapes, apples and sugar beets
resulted in higher vyields. PEF pretreatment beforaceration in wine making was
demonstrated to improve polyphenolic yield frompgravine (El Darra, et al., 2016). A study
carried out on microalga€hlorella vulgaris and Spirulina platensis showed that PEF
pretreatment of 15kV/cm and 100 kJ/kg enhancectiaction of carotenoids by up to 525
and 150%, respectively, compared to conventioniniiding homogenization alone (Topfl,
2006).

High-pressure homogenization has been employedhtrextraction of lipids from
Chlorella saccharophilgMulchandani, Kar, & Singhal, 2015). Extractionfatoidans from
Nemacystus decipientssing high pressure homogenisation in a pressurger of 40 — 100
MPa, as a pretreatment followed by hydrothermat@ssing was reported by (Li, Luo, Yuan,
& Yu, 2017). HPH resulted in 16.67% yield of fucarg at 70 MPa for 2 cycles followed by
hydrothermal extraction. Fig. 4 shows the strudtarenges before and after high pressure
treatment.

Hydrodynamic cavitation involves the formationaalvities in a suspension where it
leads to formation and collapse of microbubbleg.(Bt) (Lee & Han, 2015). These bubbles
are formed when the pressure drops below the yajessure of the suspension and collapses
when the pressure exceeds the vapor pressure.dllapse of the microbubbles produces
shock waves and momentarily increases pressure-000 atm) and temperature (500—
15,000 K), which mechanically disrupts the algdlscf_ee & Han, 2013). (Abrahamsson,
2016) reported that hydrodynamic cavitation pretnemt improved the production of

methane fromA. nodosuntompared to traditional steam explosion.

4.2 Extraction techniques
4.2.1 Hydrothermal liquefaction

Hydrothermal liquefaction converts wet biomass iotade extract under specific
conditions of temperature (280 to 370 °C) and pnesgL00 to 250 bar) (Chiaramonti, Prussi,
Buffi, Rizzo, & Pari, 2017). During this processater is used as the main solvent and when
the above-mentioned conditions exist hydrolysidiofnass occurs whereby large molecular

10
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weight compounds are depolymerised into smalleemdés. This process has been reported
for use with microalgae, where a temperature oliredo200 °C was required for lipid
extraction (Yoo, Park, Yang, & Choi, 2015). Hydretimal liquefaction ofLaminaria
saccharinain the presence of KOH was reported to improve gkaction efficiency of
mannitol and laminarin. The authors reported thatdptimum conditions for the bio crude
yield were a mixing ratio of 1:10 (biomass:wat&j0 °C and 15 min residence time without
catalyst (Anastasakis & Ross, 2011). Hydrotherdigakfaction has been employed to obtain
valuable products such as biocrude, sugars andrafsnieom seaweed biomass at industrial

scale (Barreiro et al., 2013).

4.2.2 Steam explosion

A high pressure steam explosion technique is reduw treat hard lignocellulose material for
bioresource fabrication (Fig. 5) (Shafiei, Kabirjloziei, Horvath, & Karimi, 2013).
Generally, algal biomass is heated to 180-240 °@gusteam for a certain period and
consecutively depressurised to achieve ambienditons. Repetition of these treatments
causes an explosion and cell wall damage whiclititess release of cell contents (Nurra, et
al., 2014). Steam explosion is mainly used for tingaseaweeds for biogas production
(Vivekanand, Eijsink, & Horn, 2012), for the prodion of bioethanol (Yanagisawa, Kawai,
& Murata, 2013), and for extraction of bioactivengmounds extraction from seaweeds. In
one such studyGracilaria verrucosathallus was subjected to steam explosion treatiziect
resultant changes in its structure were observe@Hiy (transmission electron microscope)
and SEM (scanning electron microscope). The authals® analyzed the chemical
composition of the seaweed and the agar yield etetria They observed that the detachment
of adjacent cells occurred and that the cuticlsusface layer showed extremely transformed
regions with a spongy appearance. They concludectiie extraction of agar was improved
and the agar obtained had low sulfate content aotecular weight (Talarico, Guida,
Murano, & Piacquadio, 1990). Steam explosion asreirgatment was also used in the
extraction of agar fronGracilaria dura Samples were soaked in 1M J€&s;, and different
explosion treatments were investigated at 140-1965C 15-20s and the results were
compared to samples without any pretreatment atid avNaOH based alkali pretreatment.
The optimum conditions for the steam explosiontinegt were 150°C and 15s and it was
observed that even short duration treatment (28s3ed complete thallus destruction and

liquefaction of the algae. The gel strength, apmareodulus of elasticity and melting

11
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temperature of the agar obtained by steam explosine lower than the values obtained
from samples without pretreatment or with alkaktpeatment, but were still better compared
to the values obtained from commercial agarose kmnphe yield of agar obtained with the
steam explosion of NEO; soaked algae was higher than other conventionahads

(Murano, et al.,, 1993). Steam explosion was progpose a technology for extracting
phycocolloids. Despite the positive results obtdjnkmited studies have been reported

related to the extraction of the wide range of biv@ compounds from seaweeds.

4.2.3 Pulsed electric field

Pulsed electric field (PEF) applies an electri¢eldf across the cell wall that results in cell
breakdown. The number and size of resultant paredirectly related to the electric field
pulse and strength applied (Fig. 6a) (Gunerkenalgt 2015). PEF is widely used in
microalgae cell disruption but recent studies shdwat PEF may also be used for seaweed
biomass. Recently PEF was investigated as a preteea process for protein extraction from
Ulva sp. PEF treatments (50 pulses of 50 kV) were agpver an electrode gap of 70.3 mm
on freshUlva andresulted in a 7-fold increase of total protein canga to osmotic shock.
Also the isolated protein gave better antioxiddhén the protein standards (Robin, Kazir, et
al., 2018). The same research group used PEFWth to extract the ash materials. They
reported that PEF improved the ash yield and soagmitly enhanced the extraction of major
minerals such as K, Mg, Na, P and S compared tmohnmal pressing method of extraction
(Robin, Sack, et al., 2018).

4.2 .4 Ultrasound assisted extraction

Ultrasound waves are mechanical waves which prdpdgg compression and rarefaction,
and can pass through solid, liquid and gas mddies mode of propagation causes regions
of negative pressure in the liquid. Vapor bubblesfarmed when the pressure exceeds the
tensile strength of the liquid, which undergo imgddm under strong ultrasound fields, this
phenomenon is called cavitation (Kadam, Tiwari, &@nnell, 2015) and the ability of
ultrasound to cause this cavitation, depends upmreral factors including, ultrasonic
frequency and intensity, properties of the mediwchsas surface tension and viscosity and
the ambient conditions including temperature aresgure (Tiwari, 2015). The implosion of
the cavitation bubbles further generates macrotanme, high velocity interparticle
collisions, and perturbations in microporous p&tcof the biomass. The -cavitation

occurring near the solid-liquid interfaces direatéast moving stream of liquid through the
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cavity at the surface. These microjets result ifase peeling, erosion, and particle break
down therefore enhancing the release of bioactorepounds from the matrices (Kadam,
Tiwari, & O'Donnell, 2015). Effects of ultrasounaclude fragmentation, erosion, capillarity,
detexturation and sonoporation (Chemat, Rombauagif®i et al., 2017). Ultrasound reduces
extraction time, solvent use and processing caditsasound can be used in combination
with technologies such as extrusion, microwave esupical fluid extraction, and also in
processes involving ultrasound-assisted Clevenggillation, ultrasound-assisted Soxhlet
extraction and continuous ultrasound-assisted ettra (Chemat, Rombaut, Sicaire, et al.,
2017). Ultrasound can be applied via a probe oulaasound bath (C. Wen, et al., 2018).
Various ultrasound machines are shown in Fig. 6u{tbasound bath, (c) ultrasound probe
system. Use of ultrasound has been investigatedxinaction of various biomolecules from
seaweed, for example agar (Din, et al., 2019),emmo{Kadam, et al., 2017), laminarin
(Kadam, et al.,, 2015), carrageenan and alginateugsouf, et al., 2017), fucoidan,
phlorotannins and alginate (Fl6rez-Fernandez, Ldpaxia, Gonzalez-Mufioz, Vilarifio, &
Dominguez, 2017) etc. A combination of ultrasourithwether treatments such as enzyme
extraction (Casas, Conde, Dominguez, and Moure 9205Bnd with microwaves

(Alboofetileh, Rezaei, Tabarsa, Ritta, et al., 201&s also been investigated.

Recent studies show that ultrasound can be used mstreatment to enhance the drying
kinetics of A. nodosumseaweed. An ultrasound intensity of 6.00-75.78 @0 kHz
probe) was applied for 10 min, followed by hot @nvective drying (50 °C, air velocity as
0.3 m &) until a constant weight was obtained. It was ol that the pretreatment reduced
the drying time required, with 75.78 W nintensity treated samples showing the shortest
drying time (Kadam, Tiwari, & O'Donnell, 2015).\itas also observed that the colour of the
ultrasound treated samples were lighter than theralo It was also concluded that the
ultrasound pretreatment reduced both the energyuroption and time required for drying of

A. nodosum

Fig. 7 shows SEM images oGracilaria gracilis treated using different extraction
technologies. Fig. 7 (c) illustrates that ultrasymmobe treatment (50-60 kHz, 200 W) for
different periods of time (10 s to 10 min), ordaoff cycles (30 s and 20s) increases cell
rupture over other methods such as freeze thawgenatan, high pressure assisted and
ultrasound bath extraction, and releases the gbitytband phycobiliprotein front. gracilis
(Pereira, et al., 2020). Less sulfate was obsemvembar extracted using a combination of

sonication and ultrasound. Ultrasound as a pretrestt enhances the greenness by having the
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following advantages: significant reducing the gsstime required for extraction, digestion
etc., reduces energy consumption, facilitates afsow concentration and quantities of
solvents, may be carried out at room temperatudeatimospheric pressure, reduces analyte
loss and contamination risks, and increases praatyctBendicho, et al., 2012).

4.2.5 Microwave assisted extraction

Microwave assisted extraction (MAE) has been dernatexl for bioactives extraction from a
wide range of matrices. Microwaves are electromagmnadiation emitted in the range of 300
MHz — 300 GHz. Two main frequencies (915 MHz and52GHz) are employed for

microwave processing. Microwave heating is gendrhteionic conduction of dissolved ions
and dipole rotation of polar solvent. Rapid intérhaating leads to effective cell rupture
which releases the target compounds into the sbixfwequez-Delfin, Robledo, & Freile-

Pelegrin, 2014). The efficacy of MAE depends onrtlierowave energy absorption by polar
solvents including water, methanol etc. which iBuenced by the dielectric properties of

solvents.

The efficiency of microwave heating depends onabidity of the material to absorb
electromagnetic energy, and energy dissipated igsared by the dielectric loss tangent.
When the dielectric loss tangent of biological matds higher than that of the solvent, the
plant material can reach a higher temperature tharsolvent and consequently the inside
cell pressure increases, resulting in the ruptéitbecell membrane and release of the target
compounds into the solvent. Therefore, the compsdrain plant material can be extracted

more rapidly compared to conventional extractiom@bru, Mason, & Calinescu, 2017).

The application of microwaves for extraction may Unesuitable for temperature
sensitive bioactives extracted from biological ncats e.g. fromHibiscus sabdariffa
(Pimentel-Moral, et al., 2018) broccoli, choy-sumdacabbage (Wachtel-Galor, Wong, &
Benzie, 2008). MAE has been reported for the ettamf fucoidan (Yuan & Macquarrie,
2015(a)) sulphated polysaccharides (Yuan, et @ll8Pfrom seaweed. It has also been used
in combination with ultrasound for extraction afcbidan from seaweed (Alboofetileh,
Rezaei, Tabarsa, Ritta, et al., 2019) (Table 1).

4.2.6 Supercritical fluid extraction
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A fluid is said to be in a supercritical state whbka temperature and pressure conditions are
above its critical point. During this state, thegerties of the fluids are intermediate between
gases and liquids i.e. a density close to thatgoids which induces a solvating power like
liquids, a viscosity close to gases, diffusivityeinrmediate between liquids and gases, which
increases mass transfer between target compoundthendupercritical fluid (Chemat,
Rombaut, Meullemiestre, et al., 2017). £ used for over 90% of supercritical fluid
extraction (SFE) applications of natural compou(dddin, et al., 2015) because of its low
critical conditions (Tc: 31 °C, Pc: 7.38 MPa) , widvailability, non-toxicity, non-flammable
and non-explosive nature (Chemat, Rombaut, Meidisime, et al., 2017). Apart from GO
ethanol, hexane, methanol, pentane, butane, nitide, sulfur hexafluoride and fluorinated
hydrocarbons can also be used for SFE due to #Hugercritical state properties. A key
advantage of C@is that it can be eliminated from the extract dgrdecompression without
leaving any residue (Herrero, del Pilar Sanchez-#@gm Cifuentes, & lbafiez, 2015).
Additionally the non-oxidative nature of G@avours extraction of compounds which are
prone to oxidation (Essien, Young, & Baroutian, @02A disadvantage related to the use of
CO, for SFE is that it exhibits a chemical behavioumitar to that of lipophilic or non-polar
solvents and is able to extract non-polar compounaly. In order to overcome this
limitation, polar solvents such as water, metharal ethanol can be used as co-solvents to
modify the solvent polarity (Molino, et al., 202@upercritical C@has been employed for
extraction of different target compounds includiiugoxanthin (E. M. Balboa, Moure, &
Dominguez, 2015) and fucosterol (Becerra, et28l15) from seaweeds. Supercritical £O
with soyabean oil, canola oils, water, and ethasoh co-solvent was found to be efficient
for extraction of phlorotannins and carotenoidsré8ana, et al.,, 2017) and fatty acids,
phenolics and fucoxanthin (Saravana, et al., 20E®)Je 1). The use of supercritical fluid as a
pretreatment for rice straw was reported to fat#itcellulase enzymatic hydrolysis (Gao, et
al., 2010). (Men’shova, Lepeshkin, Ermakova, Pokkiy & Zvyagintseva, 2013) studied the
effect of supercritical fluid pretreatment of browlyae Saccharina japonicandSargassum
oligocystum)with and without 5% ethanol as a co-solvent (56 bar, T = 60°C) to extract
fucoidan. They found that supercritical €®@ith 5% ethanol gave an improved vyield of
fucoidan: S. japonica(1.35%) andS. oligocystum(0.55%) compared to supercritical €O
alone. In another study supercritical £®as used as a pretreatment for deoilthgaria
pinnatifida, followed by hydrothermal- microwave treatment tdragt fucoidan (Quitain,
Kai, Sasaki, & Goto, 2013)
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4.2.7 Pressurized liquid extraction

Pressurized liquid extraction (PLE) also referredas pressurized fluid extraction (PFE),
pressurized hot-solvent extraction (PHSE) or acatdd solvent extraction (ASE) is based
on the use of solvents under high temperature agskpre conditions which are below their
critical points. The solvents under these cond#&ioemain in liquid state. When PLE is
carried out with water as the solvent, it is knoas)subcritical water extraction (SWE),
superheated water extraction (SHWE) or pressutmsevater extraction (PHWE) (Essien,
et al., 2020; Srinivas & King, 2010). Subcriticaater is defined as hot water at sufficient
pressure to maintain the liquid state at critieahperature between 100 °C (the boiling point
of water) and 374 °C (the critical point of watander the critical pressure (1-22.1 MPa) (Ju
& Howard, 2005). One of the most beneficial feasupé subcritical water is that its dielectric
constant which governs the polarity of the solvesnt be modified by varying temperature
and pressure. For example, at ambient condititvesdielectric constant of water is 80 which
indicate that it is an extremely polar solvent. oer, at 250°C and 4 MPa water has a
dielectric constant of 27 which is close to ethalitdnce it is suitable for extraction of low-

polarity compounds (Chemat, et al., 2012).

The use of subcritical water for enhanced extacbf fucoidan (Alboofetileh, Rezaei,
Tabarsa, You, et al., 2019), phenolics (Dinh, Samay Woo, & Chun, 2018), carrageenan
(Gereniu, Saravana, & Chun, 2018) from seaweedbéas reported. Enhanced extraction of
bioactives is mainly due rupture of seaweed mari@EM images (Fig. 10) show the
changes in structure &. cottoniiand Gracilaria sp. after subcritical water treatment. The
control samples do not show any surface crackshattda regular and compact surface
structure. After subcritical water treatment, regsl of E. cottonii and Gracilaria clearly
showed disruption (Machmudah, Winardi, Kanda, &@&@017).

PLE techniques require small amounts of solvent\pawsed to extraction at ambient
conditions. The increase in the extraction tempeeatan promote higher solubility of target
compounds and increased mass transfer rate. Ini@agdhigh temperature decreases the
viscosity and the surface tension of the solveskéch increases penetrability into the matrix
and extraction of target compounds (Ibafiez, Herrbtendiola, & Castro-Puyana, 2012).

The extraction of plorotannin (del Pilar Sanchez-Camargo, et al., @)1polyphenol
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(Heffernan, Smyth, FitzGerald, Soleila, & Brunton, 2014)and fucoidan (Saravana, Cho,
Park, Woo, & Chun, 2016) from seaweeds has beentezp(Table 1).

4.2.8 Enzyme assisted extraction (EAE)

Enzymes can hydrolyse cellular components (e.g.ptexnpolysaccharides) to facilitate the
accessibility of the target solute compounds to sbésent. Various factors influencing

enzyme assisted extraction (EAE) include enzymesctieh according to the target

compound, hydrolysis time, pH, proportion of enzytoesubstrate and solvent. However
seaweed is a complex matrix which is more difticalhydrolyze compared to plant biomass
(Wijesinghe & Jeon, 2012).

The use of enzymes as a pretreatment prior to ciovial extraction or in combination with
novel technologies including ultrasound, high puess ionic liquid, microwave and
supercritical fluids has been reported (Nadar,, RaBathod, 2018). The use of the enzyme
assisted extraction of various compounds (polysaodés, carotenoids and polyphenols etc)
from a range of matrices has been reviewed by (Nadal., 2018) and (Wijesinghe & Jeon,
2012). EAE has been employed for the extractioagair (Q. Xiao, et al., 2019), fucoxanthin
(Billakanti, et al., 2013), and in combination withtrasound, microwave and subcritical
water for fucoidan (Alboofetileh, Rezaei, TabarR#ta, et al., 2019), in combination with
ultrasound for phenolic compounds and carbohydraiaosaccharides (glucose, arabinose,
fucose and the sum of xylose, galactose and mahn@ssas, et al., 2019) and in
combination with microwaves for phlorotannin (Chemsiddhi, Franco, Su, & Zhang, 2015)

from seaweeds.
4.2.9 Combined extraction techniques

Combination of extraction techniques to exploit exgies between complementary
technologies and improve extraction efficiencies haen widely investigated for extraction
of bioactive compounds. For example, guava seedspatp extracted with hot water and
microwaves had a higher yield of polysaccharidesygared to conventional extraction
(Arasi, Rao, & Bagyalakshmi, 2016).

Both ultrasound assisted enzymatic extraction (UABEd microwave assisted enzymatic
extraction (MAEE) combine two complementary exti@ctmethods. In UAEE and MAEE,

enzymatic hydrolysis promotes recovery of targehjgounds by partial disruption of cellular
matrix and ultrasound or microwave treatments alssist inactivation of enzymes to

terminate the reactions. In some cases enzymeitgaten be enhanced in the presence of
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ultrasonic waves depending upon frequency and pd@édonnell, Tiwari, Bourke, &

Cullen, 2010). (Wu, Zhu, Diao, & Wang, 2014) workesh the recovery of crude
polysaccharides from pumpkin with conventional astion, UAE, UAEE and EAE. They
reported that the UAEE method showed a synergeftect and the highest extraction yield
with a maximum crude polysaccharide recovery oB4t30.15% compared to EAE, UAE

and conventional extraction alone.

MAEE has been studied for essential oil extractrom Isatis indigoticaseeds (Gai, et al.,
2013) and pumpkin seeds (Jiao, et al., 2014). Chetng. (2015) investigated the feasibility

of MAEE for the extraction of polysaccharides fr@ohisandra chinensiaill.

The combination of UAE and MAE together (UMAE) hhsen demonstrated to have
potential to be a cost-effective and efficient agtion technology. (L. Wen, et al., 2019)
investigated the effect of conventional solventaotion (CSE), UAE, MAE and UMAE on
extraction yield of soluble dietary fibre (SDF) finacoffee silver skin. They reported an SDF
yield (42.7 + 0.4%) obtained by UMAE which was 1159 and 1.2 times higher than the
recovery rates achieved by CSE, UAE, and MAE, rempaly. In another study (Garcia-
Vaquero, Ummat, Tiwari, & Rajauria, 2020) inveated the effect of UAE, MAE and
UMAE on extraction of fucose-sulphated polysacatesi(FSPs), total soluble carbohydrates
and antioxidants from Brown algal, nodosumThey reported that UMAE improved the

yields of compounds extracted compared to the iEA& and MAE alone (Table 1).
4.2.10 Green impact of non conventional extracteminologies

Use of non conventional extraction technologies lealp overcome some of the challenges
and limitations of conventional extraction methadsh as long extraction times, use of large
guantities of solvent, high energy input and degtiad of labile compounds. The wide range
of pretreatment and extraction methods outlinethis review demonstrate the principles of
green extraction techniques which include (i) inmtoon by selection and use of renewable
resources; (ii) use of green/alternative solvelfii$) energy reduction; (iv) zero-waste

approach; (v) streamlined extraction processes;(ahdesidue free extracts (Chemat, et al.,
2019). The byproducts or left over biomass follagviconventional extraction of target

compounds are generally discarded because ofrédsemce of chemical residues. Adoption
of green extraction techniques facilitates byprodutlisation and recovery of the

compounds from residual biomass.

5. Conclusions and future perspectives

18



578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

595

596

597
598
599
600
601
602

603
604
605
606
607
608
609
610
611
612

Seaweeds are an abundant and renewable biomassceefom which a wide range
of target compounds can be extracted such as #dgim@ar, carrageenan, polyphenol,
phlorotannins, carotenoids, proteins, lipids, &tese target compounds have a wide range of
applications in the food, nutraceutical, pharmacautbiotechnology and cosmetic sectors.
The cellular structure of seaweed is complex arel tdrget compounds are difficult to
extract. Therefore, the use of an efficient extogcttechnique is of utmost importance.
Traditional extraction methods have been widelgigil and commercially employed despite
their limitations. Several studies have shown thatuse of pretreatments can improve the
extraction yield. Novel extraction technologies lsws MAE, UAE, EAE and supercritical
fluid extraction are currently being employed astggatments followed by conventional or
novel extraction techniques.

Despite all the advantages of novel green extnagirocesses outlined in this review,
conventional methods still dominate industrial &alons in the marine sector. This is
mainly due to, (i) costs associated with the immatation of high-tech, expensive,
sophisticated techniques; (ii) limited scientifiodwledge on novel extraction methods; (iii)
non uniformity of reporting of novel extraction tegques and control parameters in reported

studies and (iv) scale up challenges associatddneitel extraction technologies.
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Table 1. Extraction of seaweed target compoundgusrious mechanical cell disruption techniques

Target Source Extraction Extraction Methodology Result Reference
(seaweed) solvent
Compound technology (optimised
extraction
condition)
Bead mill
Protein Ulva sp. and Bead mill Buffer Milling : 3 cycles of High antioxidant (Kazir, et al.,
Gracilaria sp. 60sat 6500 pm, activity shown by 2019)

breaks (1208) protein concentrates

between cycles

High pressure

Fucoidan N. decipients High pressure Distilled water 1000g seaweed +rucoidan recovered(Li, et al., 2017)
homogenization water (1:15), subjectedby 70 and 100 MPa
and hydrothermal to  high pressure showed higher
extraction process homogenization at 40,antioxidant  activity
70 and 100 MPa, than conventional
followed by method extracts
extraction (70 °C for
30 min)
Hydrothermal liquefaction
Mannitol and L. saccharina Hydrothermal Water 25°C min* Max. bio  crude (Anastasakis &

Biomass/water (5- (19.3%)., o_btained Ross, 2011)
from 1:10 biomass-

0,
20)%, water ratio (350 °C),
250-370°C, 15 min residence
12-Without catalyst.

laminarin liquefaction

Residence time

30



Steam explosion

Agar Gracilaria
verrucosa
Agar Garcilaria dura

Pulsed Electric Field

Protein Ulva sp

Steam explosion

Steam explosion

Pulsed
Field

Water

Water

Electric Fresh biomassPEF treatment at 2477-fold
with water

120min, Sugars in agueous
Catalyst  (0-100)% Phase  included
laminarin and
KOH .
mannitol
90°C, Multiple times  Exilat of agar (Talarico, et al.,

was improved, and1990)
the agar showed low
sulfate content and
molecular weights

Treatment with 0.1Agar extracted (Murano, et al.,
HCI, neutralised with exhibited lower 1993)
NaOH and washedmelting temperature,
with water to neutral gel strength  and
pH. apparent modulus of
elasticity than native

Steam explosion :
pretreatment: P Algaeand alkali pretreated
soaked with 1M samples.

NapCO;s, steam

explosion: 150°C for
15sec. Extraction (95,
45 min, 0.05M
phosphate buffer)

increase in (Robin, Kaazir,
kJ/kg, 50 kV (50 total protein extractedet al., 2018)
pulses), 70.3 mmcompared to osmotic

electrode gap, 140 gshock samples




Ultrasound

Phenolics,
uronic acid and
fucose and

Fucoidan

Carrageenan
and alginates

A. nodosum Ultrasound

Sargassum Ultrasound

muticum

Sargassum Ultrasound
binderi and
Turbinaria

ornate

Kappaphycus
alvarezii and
Euchema
denticulatum

fresh Ulva

Concentration 740 W Efficient in extracting (Kadam, Tiwari,
(0.03 M HCI) Ultrasonic probe bioactive compounds Smyth, et al.,
2015)
Amplitude:114um,
Extraction: 25 min,
Acid: 0.03 M HCI
Water Liquid: solid ratioFucose and sulphatdFlérez-
20:1, at 25 °C (RT), content in extract Fernandez, et
5-30 min increased during firstal., 2017)
’ 25 min of treatment,
40 kHz, gave maximum
Intensity 1.5 A and antitumoral activity
150 W
Alginate: 2% Alginate: 150 W Extraction time (Youssouf, et
NaOH ultrasound, decreased withoutal., 2017)
algae/water ratio 10affecting chemical
g/l, 90 °C, pH 12, 30 structure and molar
min. mass distribution
Carrageenan: Carrageenan: pH 7, 15
(water) min
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Phenolic
carbohydrates

Polyphenols,
phlorotannins
and antioxidants

Pelvetia

caniculata
Fucose A. nodosum UAE, MAE or Maceration UAE (500 W, 20kHz), Maximum vyields of
sulphated with 0.1 M MAE (2450 MHz) or compounds achieved

and S. muticum

Fucus serratus
Fucus
vesiculosus
Fucus spiralis
H. elongata
Halidrys
siliquosa,
Laminaria
digitata, L.
saccharina
Laminaria
hyperborea A.
nodosum Alaria
esculenta and

EAE, Enzymes in
UAE, 0.1 M
Ultrasound- Eﬂhosphate/t ?.1
assisted buft acetate
enzymatic urer
extraction

(UAEE)

UAE and 30, 50

conventional

extraction method

70% ethanol

EAE:
buffer
50(v/w) (L/s)

Enzymes
solution.

UAEE: 60%
amplitude, (400 W, 2

kHz)
Power discharges:

Sselective

EAE in
phenolics

increased antioxidant

activity of extract.

extraction yield

in UAEE was better than(Casas,
extracting 2019)

and

4 (UAE) more efficient
in enhancing the total

and

phenolic

min and off periods of extraction than EAE.

25 min, on the buffer
with or without
enzyme

vesiculosus,

ultrasound conditions _ .
35 and 130 kHz, 30, <12 30 minand 50%

50 and 70% ethanol,

for 10 and 30 min.
Optimised conditions
used for all
seaweeds

extraction method.

(35

ethanol).

Significant
improvement

seaweeds
compared to
conventional
extraction

in

11 extraction yield (1.5-
andfold to 2.2-fold)

compared with solvent;, all

et al.,

and Optimisation using F. Optimised conditions (Ummat, et al.,
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polysaccharides, UMAE HCl for 10 min  UMAE (US; 500W, using UMAE (Garcia-

total soluble 20kHz and MW 2450 Vaquero, et al.,
carbohydrate MHZz) for 2 and 5 min 2020)
and antioxidants
Fucose and L. digitata, Ultrasound 0.1 M HCI Power 500 W, 20 kHz, UAE was found to (Garcia-
glucan L. hyperborea assisted extractlon(lzlo’ wiv) for 76 I%dlo min, 100%enhance the yield of\éa_quero,
andA. nodosum time (10 min) ampfitude polysaccharides an ajauria,
its antioxidant S'\X;’:é'r’ley &
activities O'Doherty,
2018)
Phenolics and Hormosira UAE 70% ethanol, 50 Hz, 220 V and 250UAE was more (Dang, et al.,
antioxidant banksii solvent:sample W. Optimum efficient than 2017)
activity 50 (ml/g) conditions: 30 °C, conventional
60% power for 60 extraction in terms of
min, 150 W. higher TPC and
antioxidant activities.
Microwave
Fucoidan A. nodosum Pre extraction 0.1 M HCI Microwave  heatingHighest vyield with (Yuan &
with ethanol (220 °C), 15 min optimum conditions Macquarrie,
followed by 2015(c))

Microwave

. . MAE was found to be
assisted extraction

faster and more
efficient.

MW 90 °C showed
similar composition,
DPPH scavenging as
conventional. But has
higher reducing
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Fucoidan

Phlorotannin
and antioxidant

Fucoidan

F. vesiculosus

Ecklonia radiata

Nizamuddinia
zanardinii

MAE

Microwave
assisted
enzymatic

Viscozyme,
alcalase,
cellulase,
flavourzyme,
ultrasound,
microwaves,
subcritical water,
alcalase-

Distilled water

Buffer solution

Water

power than
conventional.

Molecular weight

and sulfate content of
fucoidan increased
with decreasing

extraction time.

MAE in digestion MAE short extraction (Rodriguez-
oven model (MDS- time and use of non-Jasso, Mussatto,

2000) corrosive  solvents, Pastrana,

- . resulting in reducedAguilar, &
1/2205 gp/?rlﬂ 1 min andcosts Teixeira, 2011)
(alga/water)

Microwave-assisted Extraction time (5- 30 (Charoensiddhi,
Viscozyme extraction min), most et al., 2015)

for 5 to 30 min effective process.

High  phlorotannins
contents and
antioxidant activities

Subcritical water Highest fucoidan (Alboofetileh,
(1500 W (150 °C), yield by SWE, lowest Rezaei, Tabarsa,
SWE, 10 min runs (2) vyield by UAE. Ritta, et al.,

Antibacterial assays:2019)

fucoidans extracted
by microwave&
subcritical water
inhibited E. coli.
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ultrasound Growth.
(EVAE), and

) Fucoidans extracted
simultaneous

from enzyme-US,

umliarlg\(,)vl;r\]/i- US-microwave  and
q subcritical water
ggrh(lvgﬁzional arr]lot shoyved inhibi_tion
. against P. aeruginosa
water extraction. (2 mg/mL)
Sulfated Ulva prolifera Microwave Aqueous 2.45 GHz, 500 W, 120Molecular weight and (Yuan, et al.,,
polysaccharides assisted solution with °C, 0.01 M HCI for chemical composition 2018)
hydrothermal different HCI yield were influenced
extraction concentrations
Polysaccharides

extracted (90 °C, 0.05
M HCIl) had best
water-holding and oil-
holding capacity.

0.05 M HCI, 150 °C:
best foaming
properties

0.1M HCI, 150 °C:
highest  antioxidant

activity
Phytosterols and Undaria Microwave Saponification 1.5 mol/l ethanolic Microwave was found (X.-H. Xiao,
phytol pinnatifida and assisted extractionusing ethanolic KOH, 2g homogenisedto be an efficient Yuan, & Li,
Sargassum solution of sample extraction method. 2013)
fusiforme KOH MW and high speed
counter current
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chromatography

combination was
efficient in separation
and purification of

compounds.
Sulfated Microwave Distilled water 1/ 20 sample to solvenMAHE resulted in (Tsubaki, Oono,
polysaccharides Uva spp. and assisted ratio, reduction of treatmentHiraoka, Onda,
Monostroma hydrothermal Microwave: 2.45 GHz time, _ without & Mitani, 2016)
latissimum extraction _ ' extracting agents. By
(MAHE) Thermal history basedaltering the extraction
on 4 min come uptemperature, the
time, extraction time viscosity and
10 min, temp 100- molecular weight of
180°C. polysaccharides can
be controlled.
Subcritical water
Fucoidan N. zanardinii Subcritical water  Subcritical 29 min extraction, Higher vyield of (Alboofetileh,
water 150 °C, and 21 g/mLfucoidan than Rezaei, Tabarsa,
(material to water) conventional method.You, et al.,
Fucoidan showed2019)
appropriate
antioxidant,
immunomodulatory
and anticancer
activity
Polysaccharides S. japonica SWE+ DES DES-  water150 °C, High alginate and (Saravana, Cho,
(algi_nate and solution 36.81 ml/g L/s ratio fucoidan yield Woo, & Chun,
fucoidan) 70% water content, 2018)

19.85 bar.
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Phenolics

S. japonica

lonic liquid- 0.25 M 0.25 M solvent, 175 ° Antioxidant activity (Dinh, et

assisted [C4AC1lim] C, 50 bar, extractionwas enhanced in2018)
subcritical water [BF4] solution time 5 min SWE+ IL, being
(IL+ SWE) in distilled correlated to

water phenolics.

SWE-+IL showed
enhancement in
extraction

Quantity and quality
of  phenolics in
Subcritical water
extraction+lonic

liquid and Subcritical
water extraction
higher than Solid
liquid extraction

al.,
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Carrageenan K. alvarezii

Polysaccharides S. japonica
(alginate and
fucoidan)

Pressurized liquid extraction

Fucoidan S. japonica

Proteins Porphyra

umbilicalis, Ulva

lactuca
Saccharina
latissima

and

lonic liquid 1% ionized Pressure 5 MPaHigh vyield, Gel (Gereniu, et al.,
assisted liquid or temperature (60-180strength and viscosity2018)
subcritical water distilled water °C), 1% 1- butyl- minimal,
extraction 3methylimidazolium  emulsification index
acetate, 1/80 g/ml higher than SWE and
conventional.
Antioxidant  activity
of sample by
SWE-+IL was low due
to low sulfate content
SWE+ DES DES- waterl50 °C, 19.85 bar,High alginate and (Saravana, et
solution 70% water content,fucoidan yield al., 2018)
36.81 mL/g L/s ratio
Pressurized liquid Water or 140 °C temperaturelncreased crude(Saravana, et
extraction sodium_ and 50 bar pres_surefucoidan yield. al., 2016)
hydroxide or 0.1% sodium Extracts showed
ethanol hydroxide antioxidant  activity,
radical scavenging
activity and good
emulsion stabilizing
properties
a) Sonication a) Water a) 1-hour sonication, pH-shift method (Harrysson, et

followed by stirring showed highestal., 2018)
and protein protein concentration.
precipitation by

ammonium sulfate

b) pH-shift b) Water
protein extraction
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Antioxidant

Polyphenol

A. nodosum,
vesiculosus,
serratus

F. serratus,
G. gracilis,

C) acceleratedc) 70% food
solvent extraction grade acetone

(ASE) to extract in water
lipids and
phlorotannin and
carbohydrates

before protein

F. Accelerated 80%

F. Solvent ethanol/20%
extraction, H20
using different
solvents
Solid- liquid Cold water
extraction,
PLE

b) sample to water 1:6
(wiv),

homogenisation,
milling, pH adjustment
to 12, centrifugation.

C) for lipids,
phlorotannin and
carbohydrates: 1000
psi and 0 °C.
Extraction for 1 cycle
of 7 min

for proteins: 50%
methanol-water, 1500
psi, 37 °C, 2 cycles of
5 min

100 T (°C) /6.9 P Ascophyllum extracts (O’Sullivan,
(MPa). Static mode of (80% aqueousal., 2013)
extraction. ethanol), gave highest
antioxidant potential,
based on ability to
Sample dispersion:protect against

Silica (sample: silica oxidant-induced DNA
ratiol:3(w/w)) and damage
diatomaceous earth

Cold water, shaker 24SLE with Cold water (Heffernan,
hr, filtered twice extracts showed maxal., 2014)
TPC from F. serratus.

et

et
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C. fragile,

L. digitata,
Fucoidan S. muticum
Fucoidan Sargassum

glaucescens

Hot, compressedWater

water
(hydrothermal
processing)

Compressional
puffing
hydrothermal

The antioxidant
activity and TPC for
Solid liquid extraction
were greater than
Pressurised Liquid
Extraction using same
solvents. SLE was
better in yield
obtained, low capital
cost and ease. F.
serratus showed best

yields.
170 °C, 30:1 (w/w, dryHot water processing-(E. Balboa,
basis) liquid/solid subcritical conditions: Rivas, Moure,

effective, gave Dominguez, &
simultaneous Parajo, 2013)
extraction,

depolymerization of
fucoidans.

Fucoidan and suge
content decreased
with the temperature

Hydrothermal Puffed samples, afterCompressional (Huang, et al.,
extraction: removal of protein, puffing disrupted 2016)
Double pigments and lipidscellular structure and

distilled water were given enhances extraction
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Isoflavones

S. vulgare

Porphyra
Undaria
pinnatifida,
Sargassum
muticum
Chondrus

SP,

crispus Hypnea

spinella
Halopytis
incurvus

Enzymatic extraction

Phlorotannin

S. muticum

and

extraction (w/v 1:10) Hydrothermal with hot water. It was
extraction: Double simple and the
distilled water (w/v samples showed
1:10), 80 °C for 1 hour antioxidant activity.
Fucoidan yield found
to be more than
conventional method
Sonication SFE modifier US pretreatment for 30Sonication (Klejdus,
pretreatment (MeOH: HO min. SFE: 35 MPa, 40pretreatment led tolLojkova, Plaza,
followed by 1.9, v/v) °C for 60 min higher recovery. Snéblova, &

supercritical CQ
fluid extraction.

Enzymatic
pretreatment

Pressurized
liquids

Stérbova, 2010)

Alcalase and - Alcalase : 50 °C, 7.0PLE alone gave (del Pilar
viscozyme pH, 0.1 M phosphatehighest yields. Sanchez-
enzyme buffer Camargo, et al.,

Viscozyme, 2 hour
with pressurized

- Viscozyme enzyme"qUidS’ gave higher

50 °C, 45 pH, 0.1 M antioxidant rich
. . extracts compared to

sodium acetate-aceti _
Water  and acid buffer, for 2 or 4CPLE alone. Optimum

ethanol hour. conditions were

sonicated for _ ~160°C,  Pressurized
10 min PLE: static extraction solvent:

2016)
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time: 20 min, 1500 95% ethanol
psi; 120 °C;
extraction solvent

(75:25 ethanol: water)
(VIv).

Fucoxanthin U. pinnatifida Enzyme Water Fresh (wet) seaweed Extraction yield (Billakanti, et
pretreated Enzyme pretreatment increased with al., 2013)
followed by enzyme pre-

Diethyl ether and processing.
ethanol as co

Enzyme pretreatment
solvent yme p

followed by removal
of water-soluble
compounds from
hydrolysed seaweed
by centrifugation
prior to DME doubled
the throughput. lipids
rich in w-3 and w-6
polyunsaturated fatty
acid were generated.

The DME + ethanol
co solvent extraction
resulted in  high
yields.

Fermentable Enteromorpha  Enzymatic Various acid Nitric acid, dilute Enzymatic hydrolysis (Nahak, Nahak,

sugars sp. degradation sulphuric acid, steamwas found to be Pradhan, &
flashing, pretreatmentefficient Sahu, 2011)
followed by enzymatic
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degradation

Supercritical carbon dioxide extraction

Fucoxanthin, S. horneriandS. SC-CQ with  Ethanol as co 45 °C, 250 bar, CO SC-CQ  extraction (Sivagnanam, et
phenolic japonica EtOH as Co- solvent flow rate: 27 g/min, was  efficient in al., 2015)
compounds Solvent extraction: 2 h. extracting high yields

96% Ethanol, as a col°  FAs, and
solvent, 1 mL/min fucoxanthin content

flow rate phenolic compounds)

Oil from SC-CQ,
exhibited strong
antioxidants,
antimicrobial,
phenolics, and
antihypertensive
activities.

Oil  obtained from
Sargassum horner vi
SC-CQ, gave high
fucoxanthin yields
and better biological
activities compared to
S. japonica.

Fucoidan Saccharina Co solvents using Ethanol as co- Pressure = 550 barSupercritical CQ@ (Men’shova, et
japonica  and supercritical CQ solvent Temperature = 60 °C,with 5% ethanol gaveal., 2013)
Sargassum 5% ethanol as co-an improved yield of
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Fucoxanthin
and
phlorotannin,
carotenoids

Fucoxanthin,

alginate,
phlorotannin
and fucoidan

oligocystum
S. japonica

S. muticum

Co solvents using Sunflower oils

supercritical CQ

SFE

solvent
Fucoxanthin

oil

Phlorotannin: 2%

water, 48.94 °C ani
300 bar and

fucoidan

andvegetable oil and (Saravana,
carotenoids: 50.62 °C,water addition as coal., 2017)
300 bar, 2% Sunflowersolvent,

efficiency of SC CQ
Sunflower oil was
found be most
effective in extracting
carotenoids and
fucoxanthin, while
water improved yield
of phlorotannin.

Oil obtained via SC
C0O, and sunflower oil
showed high
antioxidant  activity
and stability and fatty
acids. Oil rich in
bioactives was
obtained

enhanced

et

45 °C and pressur&nhanced purity of (E. M. Balboa,

was set at 10 and 3%extracts

MPa, flow rate of 25 g fucoxanthin yield

CO, min?t

and et al., 2015)
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Cell disruption

l I | |
|

Hydrothermal liquefaction o Ultrasonication (o Pulsed electricfield | | o Enzymatic
o Microwave ‘

Steam explosion
Pressurized liquid
Sub and supercritical fluid

o Bead milling
o High-pressure homogenization
\o Hydrodynamic cavitation

O O O O

Fig 1. Classification of cell disruption methodsmayed in seaweed applications.
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: Bead milling, Extrusion, :
; Compression puffing, Ultrasound, :
i

1 . . Grinding, Milling, l
L__Enz_ym_atlfh_ydr_olzﬂs_ Acid/alkali, Ethanol |

formaldehyde !

Microwave, Supercritical fluid

Sub critical and Supercritical

Ultrasound and microwave,

i
i
! fluid, Enzymatic, PEF, i Maceration, Enzymatic and ultrasound
! Hydrodynamic cavitation,| i Heat Microwave and enzyme
i :
| Plasma i trea_ntn_rlent Ultrasound and supercritical
R | Stirring fluid
i Decoction

1
Acids, Alcohol, i
Alkaline, detergents, |

: Supercritical
water, lonic liquid, deep
eutectic solvents

Fig.2. Overview of extraction processes for extmacof seaweed bioactive compounds.
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Cavitation bubble
formation

sample —

Beads

Pump

Fig. 3. Different types of shear-force disruptiorstruments: a) Lab scale bead milling
system b) Lab scale high-pressure homogenizatior®@®N2 and c¢) ROTOCAV
hydrodynamic cavitators
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Fig. 4. Scanning electron micrographshofdecipientgpower: (A) untreated sample; (B-D)
sample obtained after homogeneous processing aMR@, 70 MPa and 100 MPa,

respectively, 2 cycles. Magnification: 2400-foldi, (et al., 2017).
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Steam in

Sample

[ |-»  Exhaust

Steam in +|

¢ /
-

Fig. 5. Steam explosion equipment for lab-scaleegrpents. The lid had an inlet of steam, a

temperature measurement device, and a larger veed €or release of pressure. The
autoclave was put in an insulated outer beaker tweneasily maintain the desired

temperature.
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Fig. 6. a) Pulsed electric field system- ELEA PHEPT b) Ultrasound water bath and c) UIP
2000hdT - the new digital 2000 Watts industriatagbnicator
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Fig. 7. SEM images of th&racilaria gracilis biomass cells a) before and b)-f) after the
extraction treatments (b — maceration, ¢ — ultressprobe, d - ultrasonic bath, e — freeze-
thaw, f - high pressure-assisted extraction) aagmiication of 600x.(Pereira, et al., 2020).
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Fig 9. Scanning electron microscopy images of (igdland milled A. nodosum biomass
before extraction, (II) macroalgal residue after MA250 W, 2 min) and (lll) macroalgal
biomass after the process of UMAE (1000 W, 100%mif). Scale bars (A) 200 pm
(magnification: 250x) and (B) 50 um (magnificatid®00x).
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Control panel

Extraction tank

Ultrasound tnnsduur—|

a) b)

Fig. 10. Semi pilot scale extracting instrumentsUfrasound and microwave combined
process and b) Sub-supercritical carbon dioxideraettbn instrument coupled with

ultrasound system
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