25 research outputs found

    Fabrication of High Q Microdisk Resonators using Thermal Nanoimprint Lithography

    Get PDF
    International audienceWe demonstrate the fabrication of high Q microdisk resonators on an SOI platform using thermal nanoimprint lithography. The achieved Q factor is 60000 for 2µm radius disks. Arrays of 32 resonators show uniform spectral response

    Design and demonstration of compact, wide bandwidth coupled-resonator filters on a silicon-on-insulator platform

    Get PDF
    © 2009 Optical Society of AmericaThe definitive version of this paper is available at: http://dx.doi.org/10.1364/OE.17.002247DOI: 10.1364/OE.17.002247We design and fabricate a compact third-order coupled-resonator filter on the silicon-on-insulator platform with focused application for on-chip optical interconnects. The filter shows a large flat bandwidth (3dB 3.3nm), large FSR (~18nm), more than 18dB out-of-band rejection at the drop port and more than 12 dB extinction at the through port, as well as a negligible drop loss (<0.5dB) within a footprint of 0.0004 mm²

    Sub-microsecond thermal reconfiguration of silicon photonic devices

    Get PDF
    © 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.DOI: 10.1109/LEOS.2009.5343159Using the experimental data we show the possibility of sub-microsecond reconfiguration of silicon photonics microresonators through pulse shaping of micro-heater excitation. Also, a novel heater structure based on small microdisk resonators with sub-hundred-nanosecond reconfiguration speed is proposed and investigated theoretically

    Amplifier-free slab-coupled optical waveguide optoelectronic oscillator systems.

    Get PDF
    We demonstrate a free-running 3-GHz slab-coupled optical waveguide (SCOW) optoelectronic oscillator (OEO) with low phase-noise (-120 dBc/Hz at 1-kHz offset) and ultra-low sidemode spurs. These sidemodes are indistinguishable from noise on a spectrum analyzer measurement (88 dB down from carrier). The SCOW-OEO uses high-power low-noise SCOW components in a single-loop cavity employing 1.5-km delay. The noise properties of our SCOW external-cavity laser (SCOWECL) and SCOW photodiode (SCOWPD) are characterized and shown to be suitable for generation of high spectral purity microwave tones. Through comparisons made with SCOW-OEO topologies employing amplification, we observe the sidemode levels to be degraded by any amplifiers (optical or RF) introduced within the OEO cavity

    Sustained GHz oscillations in ultra-high Q silicon microresonators

    Get PDF
    © 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.DOI: 10.1109/LEOS.2009.5343287We report the experimental observation of long-sustained GHz electronic oscillations resulting from coupled electron-photon dynamics in ultra-high-Q Si microdisk resonators with CW pumping. Theoretical analysis identifies conditions for steady-state GHz oscillations while suppressing thermal oscillations

    Low-noise RF-amplifier-free slab-coupled optical waveguide coupled optoelectronic oscillators: physics and operation

    Get PDF
    We demonstrate a 10-GHz RF-amplifier-free slab-coupled optical waveguide coupled optoelectronic oscillator (SCOW-COEO) system operating with low phase-noise (-115 dBc/Hz at 1 kHz offset) and large sidemode suppression (70 dB measurement-limited). The optical pulses generated by the SCOW-COEO exhibit 26.8-ps pulse width (post compression) with a corresponding spectral bandwidth of 0.25 nm (1.8X transform-limited). We also investigate the mechanisms that limit the performance of the COEO. Our measurements indicate that degradation in the quality factor (Q) of the optical cavity significantly impacts COEO phase-noise through increases in the optical amplifier relative intensity noise (RIN)

    Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics

    Get PDF
    © 2007 Optical Society of AmericaThe definitive version of this paper is available at: http://dx.doi.org/10.1364/OE.15.004694DOI: 10.1364/OE.15.004694We report the fabrication and experimental characterization of an ultra-high Q microdisk resonator in a silicon-on-insulator (SOI) platform. We examine the role of the substrate in the performance of such microdisk resonators. While substrate leakage loss has warranted the necessity of substrate undercut structures in the past, we show here that the substrate has a very useful role to play for both passive chip-scale device integration as well as active electronic device integration. Two device architectures for the disk-on-substrate are studied in order to assess the possibility of such an integration of high Q resonators and active components. Using an optimized process for fabrication of such a resonator device, we experimentally demonstrate a Q~3×10 ⁶, corresponding to a propagation loss ~0.16 dB/cm. This, to our knowledge, is the maximum Q observed for silicon microdisk cavities of this size for disk-on-substrate structures. Critical coupling for a resonance mode with an unloaded Q~0.7×10 ⁶ is observed. We also report a detailed comparison of the obtained experimental resonance spectrum with the theoretical and simulation analysis. The issue of waveguide-cavity coupling is investigated in detail and the conditions necessary for the existence or lack of critical coupling is elaborated

    Improvement of thermal properties of ultra-high Q silicon microdisk resonators

    Get PDF
    © 2007 Optical Society of AmericaThe definitive version of this paper is available at: http://dx.doi.org/10.1364/OE.15.017305DOI: 10.1364/OE.15.017305We present a detailed study of the thermal properties of ultra-high quality factor (Q) microdisk resonators on silicon-on-insulator (SOI) platforms. We show that by preserving the buried oxide layer underneath the Si resonator and by adding a thin Si pedestal layer at the interface between the resonator and the oxide layer we can increase the overall thermal conductivity of the structure while the ultra-high Q property is preserved. This allows higher field intensities inside the resonator which are crucial for nonlinear optics applications
    corecore