28 research outputs found

    Optimization and experimental investigation of 3D printed micro wind turbine blade made of PLA material

    Get PDF
    This paper presents the design, development, and optimization of a 3D printed micro horizontal axis wind turbine blade made of PLA material. The objective of the study was to produce 100 watts of power for low-wind-speed applications. The design process involved the selection of SD7080 airfoil and the determination of the material properties of PLA and ABS. A structural analysis of the blade was carried out using ANSYS software under different wind speeds, and Taguchi’s L16 orthogonal array was used for the experiments. The deformation and equivalent stress of the PLA material were identified, and the infill percentage and wind speed velocity were optimized using the moth-flame optimization (MFO) algorithm. The results demonstrate that PLA material has better structural characteristics compared to ABS material. The optimized parameters were used to fabricate the turbine blades using the fusion deposition modeling (FDM) technique, and they were tested in a wind tunnel.Web of Science166art. no. 250

    Optimizing end milling parameters for custom 450 stainless steel using ant lion optimization and TOPSIS analysis

    Get PDF
    The current research examines the effectiveness of cryogenically treated (CT) tungsten carbide cutting inserts on Custom450 stainless steel using multi-objective soft computing approaches. The Taguchi-based L27 orthogonal array was employed in the experiments. During milling operations, cutting force, surface roughness, and cutting temperature were measured at different spindle speeds (rpm), feed rates (mm/min), and constant depths of cut (mm). The surface roughness and chip morphology of the Custom 450 stainless steel machined by cryo-treated (CT) and untreated (UT) cutting tool inserts were compared across various responses to cutting temperature and force. This paper also carried out multi-objective optimization, employing algorithm techniques such as Grasshopper Optimization Algorithm (GHO), Grey Wolf Optimization(GWO), Harmony Search Algorithm(HAS), and Ant line Optimization (ALO). The Multi-objective Taguchi approach and TOPSIS were first used to optimize the machining process parameters (spindle speed, feed rate, and cryogenic treatment) with different performance characteristics. Second, to relate the machining process parameters with the performance characteristics (cutting force, cutting temperature, and surface roughness), a mathematical model was developed using response surface analysis. The created mathematical response model was validated using ANOVA. The results showed that in IGD values of GHO, GWO, HSA and ALO module had 2.5765, 2.4706, 2.3647 and 2.5882 respectively, ALO has the best performance indicator. A Friedman’s test was also conducted, revealing higher resolution with the ALO method than with the HSA, GWO, and GHO methods. The results of the scanning test show that the ALO approach is workable

    MFO tunned SVR models for analyzing dimensional characteristics of cracks developed on steam generator tubes

    Get PDF
    Accurate prediction of material defects from the given images will avoid the major cause in industrial applications. In this work, a Support Vector Regression (SVR) model has been developed from the given Gray Level Co-occurrence Matrix (GLCM) features extracted from Magnetic Flux Leakage (MFL) images wherein the length, depth, and width of the images are considered response values from the given features data set, and a percentage of data has been considered for testing the SVR model. Four parameters like Kernel function, solver type, and validation scheme, and its value and % of testing data that affect the SVR model's performance are considered to select the best SVR model. Six different kernel functions, and three different kinds of solvers are considered as two validation schemes, and 10% to 30% of the testing data set of different levels of the above parameters. The prediction accuracy of the SVR model is considered by simultaneously minimizing prediction measures of both Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) and maximizing R-2 values. The Moth Flame Optimization (MFO) algorithm has been implemented to select the best SVR model and its four parameters based on the above conflict three prediction measures by converting multi-objectives into a single object using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method. The performance of the MFO algorithm is compared statistically with the Dragon Fly Optimization Algorithm (DFO) and Particle Swarm Optimization Algorithm (PSO).Web of Science1223art. no. 1237

    Intelligent Modeling and Multi-Response Optimization of AWJC on Fiber Intermetallic Laminates through a Hybrid ANFIS-Salp Swarm Algorithm

    Get PDF
    The attainment of intricate part profiles for composite laminates for end-use applications is one of the tedious tasks carried out through conventional machining processes. Therefore, the present work emphasized hybrid intelligent modeling and multi-response optimization of abrasive waterjet cutting (AWJC) of a novel fiber intermetallic laminate (FIL) fabricated through carbon/aramid fiber, reinforced with varying wt% of reduced graphene oxide (r-GO) filled epoxy resin and Nitinol shape memory alloy as the skin material. The AWJC experiments were performed by varying the wt% of r-GO (0, 1, and 2%), traverse speed (400, 500, and 600 mm/min), waterjet pressure (200, 250, and 300 MPa), and stand-off distance (2, 3, and 4 mm) as the input parameters, whereas kerf taper (Kt) and surface roughness (Ra) were considered as the quality responses. A hybrid approach of a parametric optimized adaptive neuro-fuzzy inference system (ANFIS) was adopted through three different metaheuristic algorithms such as particle swarm optimization, moth flame optimization, and dragonfly optimization. The prediction efficiency of the ANFIS network has been found to be significantly improved through the moth flame optimization algorithms in terms of minimized prediction errors, such as mean absolute percentage error and root mean square error. Further, multi-response optimization has been performed for optimized ANFIS response models through the salp swarm optimization (SSO) algorithm to identify the optimal AWJC parameters. The optimal set of parameters, such as 1.004 wt% of r-GO, 600 mm/min of traverse speed, 214 MPa of waterjet pressure, and 4 mm of stand-off distance, were obtained for improved quality characteristics. Moreover, the confirmation experiment results show that an average prediction error of 3.38% for Kt and 3.77% for Ra, respectively, were obtained for SSO, which demonstrates the prediction capability of the proposed optimization algorithm

    Intelligent Modeling and Multi-Response Optimization of AWJC on Fiber Intermetallic Laminates through a Hybrid ANFIS-Salp Swarm Algorithm

    No full text
    The attainment of intricate part profiles for composite laminates for end-use applications is one of the tedious tasks carried out through conventional machining processes. Therefore, the present work emphasized hybrid intelligent modeling and multi-response optimization of abrasive waterjet cutting (AWJC) of a novel fiber intermetallic laminate (FIL) fabricated through carbon/aramid fiber, reinforced with varying wt% of reduced graphene oxide (r-GO) filled epoxy resin and Nitinol shape memory alloy as the skin material. The AWJC experiments were performed by varying the wt% of r-GO (0, 1, and 2%), traverse speed (400, 500, and 600 mm/min), waterjet pressure (200, 250, and 300 MPa), and stand-off distance (2, 3, and 4 mm) as the input parameters, whereas kerf taper (Kt) and surface roughness (Ra) were considered as the quality responses. A hybrid approach of a parametric optimized adaptive neuro-fuzzy inference system (ANFIS) was adopted through three different metaheuristic algorithms such as particle swarm optimization, moth flame optimization, and dragonfly optimization. The prediction efficiency of the ANFIS network has been found to be significantly improved through the moth flame optimization algorithms in terms of minimized prediction errors, such as mean absolute percentage error and root mean square error. Further, multi-response optimization has been performed for optimized ANFIS response models through the salp swarm optimization (SSO) algorithm to identify the optimal AWJC parameters. The optimal set of parameters, such as 1.004 wt% of r-GO, 600 mm/min of traverse speed, 214 MPa of waterjet pressure, and 4 mm of stand-off distance, were obtained for improved quality characteristics. Moreover, the confirmation experiment results show that an average prediction error of 3.38% for Kt and 3.77% for Ra, respectively, were obtained for SSO, which demonstrates the prediction capability of the proposed optimization algorithm

    Editorial to RAIME 2008

    No full text

    Multi-Response Optimization of Abrasive Waterjet Cutting on r-GO-Reinforced Fibre Intermetallic Laminates through Moth–Flame Optimization Algorithm

    No full text
    Laminated metal-composite structures, also known as fibre metal laminates (FMLs), have emerged as prominent engineering materials in various industries, particularly in the domains of aircraft and automobile manufacturing. These materials are sought after due to their enhanced impact and fatigue resistance capabilities. The machining of FMLs plays a crucial role in achieving near-net shapes for the purpose of joining and assembling components. Delamination is a prevalent issue encountered during the process of conventional machining, thus rendering FMLs are challenging materials to machine. This study aims to investigate the cutting process of novel fibre intermetallic laminates (FILs) using the abrasive water jet (AWJ) cutting technique. The FILs consists of carbon and aramid fibers that are adhesively bonded with a resin matrix filled with reduced graphene oxide (r-GO) nano fillers. Moreover, these laminates contain embedded Nitinol shape memory alloy sheets as the skin materials. Specifically, the study aims to investigate the impact of different factors, such as the addition of reduced graphene oxide (r-GO) in the laminates (ranging from 0 to 2 wt%), traverse speed (ranging from 400 to 600 mm/min), waterjet pressure (ranging from 200 to 300 MPa), and nozzle height (ranging from 2 to 4 mm), on the material removal rate (MRR), delamination factor (FD), and kerf deviation (KD). ANOVA was used in the statistical analysis to determine the most influential parameters and their effects on the selected responses. The optimal AWJC parameters are determined using a metaheuristic-based moth–flame optimization (MFO) algorithm in order to enhance cut quality. The efficacy of MFO is subsequently compared with similar well-established metaheuristics such as the genetic algorithm, particle swarm algorithm, dragonfly algorithm, and grey-wolf algorithm. MFO was found to outperform in terms of several performance indices, including rapid divergence, diversity, spacing, and hypervolume values, among the algorithms compared

    Effect of cryo-treated cutting tool end milling on custom 450 stainless steel

    Get PDF
    Custom 450 stainless steel is the most desirable material across industries due to its widespread application in the aerospace, defense and marine industries. Stainless-steel materials are challenging to deal with and fall into the list of hard-to-process materials due to their low heat conduction coefficient and high mechanical properties. In this research work, end milling was carried out on Custom 450 stainless steel machined using TiAlN coated with tungsten carbide inserts that have been cryo-treated (CT) for 24 h (24 h) and 36 h (36 h), as well as untreated (UT) inserts. The inserts were evaluated in terms of feed force, feed rate and consistent depth of cut (ap) at various spindle speeds (S). Also examined were the tool morphology, chip anatomy and surface morphology of cryo-treated material compared to untreated inserts at various responses to cutting force (Fx, Fy, Fz), cutting temperature (Tc), vibration and surface abrasion. For inserts that have been cryo-treated for 36 h, the feed force (Fx) value was 44% and 5% less compared to inserts treated for 24 h and in UT inserts, respectively. Furthermore, for 24-h and 36-h CT inserts, feed force (Fx) was 12% and 20% less compared to a UT insert. Using 24-h cryo-treated inserts as opposed to UT inserts significantly reduced the surface roughness by 20%. Cutting inserts that have undergone cryogenic treatment have been observed to exhibit longer cutting tool life due to less wear and friction on the cutting edges.Web of Science1613art. no. 474
    corecore