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Abstract: Accurate prediction of material defects from the given images will avoid the major cause in
industrial applications. In this work, a Support Vector Regression (SVR) model has been developed
from the given Gray Level Co-occurrence Matrix (GLCM) features extracted from Magnetic Flux
Leakage (MFL) images wherein the length, depth, and width of the images are considered response
values from the given features data set, and a percentage of data has been considered for testing
the SVR model. Four parameters like Kernel function, solver type, and validation scheme, and its
value and % of testing data that affect the SVR model’s performance are considered to select the
best SVR model. Six different kernel functions, and three different kinds of solvers are considered
as two validation schemes, and 10% to 30% of the testing data set of different levels of the above
parameters. The prediction accuracy of the SVR model is considered by simultaneously minimizing
prediction measures of both Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) and
maximizing R2 values. The Moth Flame Optimization (MFO) algorithm has been implemented
to select the best SVR model and its four parameters based on the above conflict three prediction
measures by converting multi-objectives into a single object using the Technique for Order of Pref-
erence by Similarity to Ideal Solution (TOPSIS) method. The performance of the MFO algorithm
is compared statistically with the Dragon Fly Optimization Algorithm (DFO) and Particle Swarm
Optimization Algorithm (PSO).

Keywords: SVR; performance measures; kernel functions; MFO; DFO; PSO; diversity and spacing;
magnetic flux leakage (MFL)

1. Introduction

Non-Destructive Testing (NDT) is a breakthrough in the industrial sector in the field
of testing. Different components used in the industry need to be checked thoroughly for
safety and better operability. Critical components such as SGTs and heater’s pressure
values will be tested multiple times for their structural integrity to avoid damage while
functioning; electromagnetic testing is also very useful in identifying the cracks in the
SGTs and pipes. Daniel et al. [1] developed an ANN model to predict the SGT’s defect
in terms of the length, width, and depth of crack from the given gray level co-occurrence
matrix features from the Magnetic Flux Leakage (MFL) image. The structural integrity
of the engineering components is increasingly very important in the modern scenario
because of safety reasons. Usually, defects in steel pipes are cracks that might be in the

Appl. Sci. 2022, 12, 12375. https://doi.org/10.3390/app122312375 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122312375
https://doi.org/10.3390/app122312375
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9610-4215
https://orcid.org/0000-0003-2349-3701
https://doi.org/10.3390/app122312375
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122312375?type=check_update&version=3


Appl. Sci. 2022, 12, 12375 2 of 25

surface or sub-surface; identifying any kind of such cracks and timely solving the issues
will avoid a big disaster [2]. In NDT, different testing methods are available for each type
of component or specimen needed to test. Normally, the NDT method will be determined
based on the component/specimen size, shape, material, and conductivity of the material
to be tested and the application capabilities of NDT techniques, including Visual Testing
(VT), Ultrasonic Testing (UT), thermography, Radiographic Testing (RT), Electromagnetic
Testing (ET), Acoustic Emission (AE), and shearography testing in terms of the benefits
and drawbacks of these techniques. Based on their inherent qualities and applicability,
further approaches are categorized. Most of the time, an NDT assessor simply employs
one non-destructive test technique. Basic testing in NDT can be done with the expertise
of individuals, but complex NDT testing requires experts with a wide knowledge of
equipment operation and computer skills to obtain accurate results [3].

Material defects play a vital role in the industry, as they create major issues in the
operation and safety of equipment and components. Material defects in the components
and equipment can be inspected in two ways, like quality checking after manufacturing
and on-site inspections during operations. Usually, most of the industry uses steel for
the manufacturing of various equipment and components with different compositions,
and steel will normally have defects like porosity, corrosion, pits, surface cracks, and sub-
surface cracks, etc.; usually defects like corrosion, porosity, pits, and surface cracks can be
manually identified with general NDT methods. The evaluation of the fracture area and the
earlier identification of the cracks are particularly crucial, and those that are under stress
or strain should be monitored regularly. Fatigue cracks or other pre-existing cracks may
cause unexpected failure or disaster. Magnetic testing techniques produce good results
in ferromagnetic materials and are extremely efficient for all components [4]. However,
sub-surface cracks are difficult to find with the naked eye, and complex NDT methods
should be used.

As a powerful and highly efficient non-destructive testing (NDT) method, magnetic
flux leakage (MFL) testing is conducted based on the physical phenomenon that a ferro-
magnetic specimen in a certain magnetization state will produce magnetic flux leakage if
any discontinuities are present in it. In the era of modern non-destructive testing, methods
like magnetic flux leakage (MFL) testing have distinct benefits over conventional inspection
techniques, including quicker inspection speeds, deeper examination depths, and simpler
automated inspection. As a result, MFL testing is widely used in industries to evaluate
ferromagnetic materials [5]. The specimen used during MFL experimental investigations of
inner flaws or sub-surface fractures is often built with flaws that prevent the presentation
of inner flaws of the same size but differing buried depths. A specimen with identical-sized
interior flaws is conceived, built, and evaluated to study the MFL course of these defects.
Identifying the sub-surface cracks also involves the simple magnetization of the material
and obtaining the flux leakage output by using a hall sensor [6]. The periodic checking and
verification of sub-surface cracks in critical areas may avoid drastic incidents. Magnetic
flux testing (MFL) techniques are required in the inspection of steel tubes and pipes in the
petrochemical industry, rope cars, nuclear reactor tubes, etc.

Ege and Coramik et al. [7] designed and produced two different PIGs to inspect
pipelines using the flux leakage method. The authors also developed a new magnetic mea-
surement system to investigate the effect of the speed variation of the produced PIGS. Shi
et al. [8] introduced the principle, measuring methods, and quantitative analysis of the MFL
method. The authors used statistical identification methods to establish the relationship
between the defect shape parameter and magnetic flux leakage signals. Suresh et al. [9]
developed a bobbin coil magnetizer arrangement to inspect the defects in small-diameter
tubes and used an ANSYS Maxwell EM V-16-based Finite Element Method (FEM) and
analytical model to support the experimental results.
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For improving model accuracy, recently support vector regression (SVR), a machine
learning tool, has gained focus among researchers in various fields to minimize prediction
error. Jin et al. [10] proposed an internal crack-defect-detection method based on the relief
algorithm and Adaboost-SVM, to overcome the problems of poor generalization and low
accuracy in the existing defect detection process. Zhang et al. [11] developed an SVR
regression model to forecast the stock price by optimizing the SVR parameters using dy-
namic adjustment and the opposition-based chaotic strategy in the Firefly Algorithm (FFA),
termed the Modified Firefly Algorithm (MFFA). Kari et al. [12] implemented the SVR model
with a Genetic Algorithm (GA) technique to forecast the dissolved gas content in power
transformers to maintain the safety of the power system. Houssein et al. [13] used a twin
support vector regression model to forecast the wind speed by tuning the SVR parameters
by implementing the Particle Swarm Optimization (PSO) algorithm. Li et al. [14] presented
a novel Sine Cosine Algorithm–SVR model to select the penalty and kernel function of SVR
and validated the effectiveness by solving benchmark datasets. Yuvan et al. [15] introduced
the GA–SVR model in forecasting sales volume to achieve better forecasting accuracy and
performance than traditional SVR and Artificial Neural Network (ANN) prediction models.
Pappadimitriou et al. [16] investigated the efficiency of the SVM forecasting model for the
next-day directional change of electricity prices and reported 76.12% forecast accuracy over
a 200-day period. Several other applications of SVR models exist in literature, ranging
from process parameter prediction [17,18] to flow estimation [19] and from 3D-printing
applications [20] to battery monitoring [21].

From the literature, it is understood that the SVR model, a machine learning tool, has
been used by researchers in different areas like stock-market prediction, electricity prices,
dissolved gas content, wind speed, etc. In this work, the SVR model is to be developed
to predict the SGT’s defect in terms of length, width, and depth of cracks from the given
gray level co-occurrence matrix feature from the Magnetic Flux Leakage (MFL) image. The
selection of parameters, such as kernel function, solver type, and validation scheme, along
with % of test data, will affect the performance of the SVR models. The root means square
error, mean absolute error, and R2 values are considered to measure the performance of
the SVR model. Multiple contradictory performance measures require the conversion of
multi-objectives into a single objective that initiated the implementation of the TOPSIS
method. The Moth Flame Optimization Algorithm (MFO) is proposed to select the optimal
parameters of SVR to minimize the prediction error. The effectiveness of the MFO algorithm
is proven by comparing its performance with the Dragon Fly Optimization (DFO) and
Particle Swarm Optimization (PSO) algorithms.

The paper is organized as follows. Section 2 describes the proposed methodology, SVR
models, and MFO algorithm, along with its pseudocode and implementation. Section 3
deals with the results and discussion with a quantitative comparison of the performance of
the MFO algorithm with the DFO and PSO algorithms. Finally, the conclusion part of the
paper is given with future scope.

2. Machine Learning Methods

This paper proposes establishing a support vector regression model to predict the
length, depth, and width of the given features of a crack image. The feature data set
developed by Daniel et al. [1] is considered in this work to establish a more accurate SVR
model compared to the neural network model. The data set had 22 features extracted
from the 105 crack images with different lengths, depths, and widths. The model’s perfor-
mance by different factors, such as kernel function, solver type, validation method and its
parameters, and % of testing data set to validate the model are considered in this work.
Built-in functions, such as ‘fitrsvm’ and ‘predict’, available in MATLAB 2022a version,
have been used in this work to fit and predict the response value for the given training
data set. The ‘resume’ function has been used to further train the SVR model until it
reaches convergence status. Various performance measures are available; RMSE, MAE, and
R2 are considered in this work, MAE and R2 are considered most often in literature and
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expressed in Equations (1)–(3). The above three performance measures will be calculated
for the total data set, training data set, and testing data set separately and be considered
for developing an optimized SVR model. Simultaneously minimizing both the values of
RMSE and MAE and maximizing the R2 values are taken as conflicting objectives, and a
total of nine performance measures are involved; hence, the TOPSIS method is proposed in
this work to convert these multi-objectives into a single objective using closeness values.
Equations (4)–(9) are used to calculate the normalized value, performance matrix, the posi-
tive and negative ideal solution, ideal and negative ideal separation value, and closeness
values, respectively. Figure 1 illustrates the proposed methodology of this work.

RMSE =

√
∑ns

i=1(Rik − rik)
2

ns
(1)

MAE =
∑ns

i=1|Rik − rik|
ns

(2)

R2 =
∑ns

i=1
(

Rik − Rk
)
(rik − rk)√

∑ns
i=1
(

Rik − Rk
)2

∑ns
i=1(rik − rk)

2
(3)

where, Rk =
∑ns

i=1 Rik
ns and rk =

∑ns
i=1 rik
ns

Nrk =
Ork√

∑it
r=1 O2

rk

(4)

Ark = Nrk ∗Wk

Minimization:

Pk =

r=1
it

min(Ark)

Mk =
i=1

m
max(Ark) (5)

Maximization:

Pk =
r=1

it
max(Ark)

Mk =

k=1
it

min(Ark) (6)

SPr =
√

∑nr
k=1 (Ark − Pk)

2 (7)

SMr =
√

∑nr
k=1 (Ark −Mk)

2 (8)

Rr =
SMr

SPr + SMr
(9)
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2.1. Support Vector Regression Model

The SVR model is adopted to compute the function relationship between independent
(parameters—Pij) and dependent (responses—Rik) variables whose distributions are not
known and concurrently minimize both model complexity and estimation errors. The
model complexity and estimation errors are concurrently minimized by implementing SVR
in the data set and its performance was outperformed compared to neural network models.
A training SVR model used a training data set to learn about the data set and to construct a
model about the generalization error by testing the model using an unseen data set. The
response value is a function of multivariate parameters as represented in Equation (10),
which can be written as Equation (11) to represent a linear regression support vector in
terms of weight vector (W), a high dimensional space related to input parameter space,
and a bias (b).

Rik = f
(

Pij
)

(10)

where,

Pij—jth Parameter of ith training data

Rik—kth Response of ith training data
i—Index for training data (i = 1, 2, 3, . . . nt)
j—Index for parameter (j = 1, 2, 3, . . . np)
k—Index for response (k = 1, 2,3, . . . nr)

f
(

Pij
)
= Wϕ

(
Pij
)
+ b (11)

The value of weight and bias is estimated by transferring the regression problem into
the constraint minimization problem expressed in Equation (12).

minimize
1
2
‖W2‖+ C ∑nt

i=1(ξi + ξ∗i ) (12)
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where,
ξi, ξ∗i —lower and upper positive slack variables
1
2‖W2‖—Flatness value of the function

C ∑nt
i=1
(
ξi + ξ∗i

)
—Empirical error

C—Box constraint or penalty parameter value

Constraints:
Rik −Wϕ

(
Pij
)
+ b ≤ ε + ξ∗i (13)

Wϕ
(

Pij
)
+ b− Rik ≤ ε + ξi (14)

ξi, ξ∗i ≥ 0 (15)

where

ε—Error tolerance

The constraint problem is resolved using the following Lagrange multiplier function
as given in Equation (16), which should be minimized concerning the conditions mentioned
in Equation (17). The list of parameters considered to establish an SVR model is presented
in Table 1. A list of kernel functions and their formulas are depicted in Table 2.

f
(

Pij
)
= ∑nt

i=1

(
αij − α∗ij

)
K(Pij·P) + b (16)

L(α) =
1
2 ∑nt

i,l=1

(
αij − α∗ij

)(
αl j − α∗ij

)
K(Pij·Pl j) + ε ∑nt

i=1

(
α∗ij + αij

)
− Rij ∑nt

i=1

(
α∗ij − αij

)
(17)

where

α∗ij and αij—Non-negative Lagrange multipliers

K
(

Pij·P
)
—Kernel function

Constraints:
nt
∑

i=1

(
α∗ij − αij

)
= 0

0 ≤ α∗ij ≤ C
0 ≤ αij ≤ C

Table 1. List of parameters considered in SVR.

Parameters Values

Kernel function (k f )

Gaussian
Radial basis function
Polynomial
Linear
Quadratic
Cubic

Solver (sr)
SMO (Sequential Minimal Optimization)
ISDA (Iterative Single Data Algorithm)
Q1LP (Quadratic Programming)

Validation scheme (vs) Cross-validation
Holdout validation

Validation scheme’s parameters K-fold—Number of folds used for cross-validation (5 to 15)
Holdout—% of data holdout for validation (10% to 40%)

% of training data 10% to 30%
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Table 2. Kernel functions and their formulas.

Kernel Function Formula Terms Used

Gaussian e−(
‖Pij−Plj‖

2

σ2 )
‖Pij − Pl j‖—Euclidean distance
σ—Variance

Radial basis function e−(γ‖Pij−Pl j‖2) γ—Scaler value

Polynomial
(

A + PT
ij Pl j

)n A—Free parameter
n—Order of polynomial

Linear
(

PT
ij Pl j

)
Quadratic

(
A + PT

ij Pl j

)2 A—Free parameter

Cubic
(

A + PT
ij Pl j

)3 A—Free parameter

One SVR model is developed using a kernel function, solver type, validation scheme
and its parameter, and % of testing data using the ‘fitrsvm’ function. If the convergence
does not occur with the model, then the model runs for another set of iterations using
the ‘resume’ function. Once convergence is reached, then, using the ‘predict’ function, the
response values are going to be computed by substituting the total data set, training data
set, and testing data set. The performance measures of the model are calculated using the
predicted (rik) and actual (Rik) response values from the data set.

2.2. Moth Flame Optimization

Moth flame optimization also belongs to the family of butterflies inspired by its
transverse orientation navigation method used for flying long distances and maintaining a
fixed angle with the flying the moon and flying spirally [22]. The MFO algorithm provides
very quick convergence at a very initial stage by switching from exploration to exploitation,
which increases the efficiency of the algorithm. Apart from that, the MFO is selected in
this work for its simplicity, speed in searching, simple hybridization with other algorithms,
requiring no derivation information in the starting phase, few parameters, scalability and
flexibility [23]. In this work, the number of dimensions that represent the position of the
moth will be considered five, and the same is represented in Table 3, and its lower and
upper bound values are listed in Table 4. One moth represents one solution that will
produce one SVR-trained model with the performance measures of RMSE, MAE, and R2

values by considering the moth dimensions as the parameters of the SVR model like kernel
function, name of the solver, validation scheme, validation scheme’s parameter, and %
of training data. Table 3 represents one such moth’s dimensions. It shows that an SVR
model will be generated with the parameters of the 3rd kernel function, 1st solver type, 2nd
validation scheme, 25% of data for validation as validation scheme’s parameter, and 20%
of training data using the ‘fitrsvm’ and ‘resume’ functions in MATLAB 2022a and trained
with the output of performance measures. The simultaneous maximizing of the value of
R2 and minimizing the value of RMSE and MAE are considered objective functions in
this work. The non-dominated sorting method is adopted to generate 100 Pareto-optimal
moths as the archive size and 100 moths as the population size by considering 100 iterations
as the stopping criteria. After obtaining the trained SVR model, the three performance
measures are calculated for both the testing and total data sets apart from the trained data
set. This procedure has been followed for all three responses, L, D, and W; responses
in SVR models will be available with their parameters and the output values of three
performance measures each for the total trained and tested data sets. The evaluation of one
such moth is represented in Figure 2. The parameters of the MFO algorithm considered in
this work are presented in Table 5. The pseudo-code of the MFO algorithm is presented
in Algorithm 1. Due to conflict objectives, the TOPSIS method has been implemented to
convert the multi-objectives (three performance measures for each trained, tested, and total
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data sets) available in the archive into a single objective. The pseudo-code of this method is
shown in Algorithm 2. The implementation of the MFO algorithm is represented as a flow
diagram in Figure 3. The pseudo-code of the PSO algorithm is presented in Algorithm 3.
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Table 3. Moth’s representation.

Kernel Function Name of Solver Validation Scheme Validation Schemes Value % of Training Data

Dimension 1 Dimension 2 Dimension 3 Dimension 4 Dimension 5
3 1 2 25 20

Table 4. Lower and upper bound value of SVR parameters.

Dimension Parameter Considered for Optimization Lower Bound Value Upper Bound Value

1 Kernel function (k f ) 1 6
2 Solver (sr) 1 3
3 Validation scheme (vs) 1 2

Validation scheme’s parameters

4
K-fold—Number of folds used for cross-validation (nf) 5 10

Holdout—% of data holdout for validation (ho) 10 40
5 % of training data (td) 10 35

Table 5. Parameters of MFO, DFO and PSO algorithms [24].

MFO Algorithm DFO Algorithm PSO Algorithm

Parameter Value Parameter Value Parameter Value

No. of moths (N) 100 No. of dragonflies (nd) 100 Particle size (N) 100
No. of iterations (nitr) 100 No. of Iterations (nitr) 100 No. of iterations (nitr) 100
Position of moth close to
the flame (t) −1 to −2 Minimum and maximum

Inertia weight
wmin = 0.2 and

wmax = 0.9
Learning factors
(C1 and C2) 2 & 2

Archive size 100 Archive size 100 Inertia weight (ω) 0.6

Algorithm 1: MFO Algorithm

Initialize the parameters for Moth-flame
Initialize Moth position Mi randomly
For each i = 1:n do

Calculate the fitness function fi
End For
While (iteration ≤ max_iteration) do

Update pareto optimal solution archive using non-dominated sorting method
Update the position of Mi
Calculate the no. of flames
Evaluate the fitness function fi

If (iteration==1) then
F = sort (M)
OF = sort (OM)

Else
F = sort (Mt-1, Mt)
OF = sort (Mt-1, Mt)

End if
For each i = 1:n do

For each j = 1:d do
Update the values of r and t
Calculate the value of D w.r.t. corresponding Moth
Update M(i,j) w.r.t. corresponding Moth

End For
End For

End While
Using TOPSIS method (Algorithm 4) convert the archive multi objectives into single objective (closeness value)
and display the optimum SVR model based on highest closeness value
Print the best solution
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Algorithm 2: DFO Algorithm

Define number of dragonflies (nd), number of iteration (nitr), and archive size
As initial population, initialize position of dragonflies Pij
Assign step vector (Vij) values as Pij
Do While i<=nitr

Calculate the value of inertia, separation, alignment and cohesion weights,
food and enemy factor values.

Compute the objective values of each dragonflies (Fi)
Determine the non-dominated objective values
Update the no. of non-dominated solutions in archive
Assume best solution as food source and worst solution as enemy
Update the values of Vij and Pij
Check Pij values lies between the lower and upper limits of process parameters

End
Using TOPSIS method convert the archive multi objectives into single objective (closeness value) and display
the optimum SVR model based one highest closeness value
Print the best solution.

Algorithm 3: PSO Algorithm

P = Particle Initialization ();
For i=1 to itrmax

For each particle p in P do
fp = f(p);
If fp is better than f(pBest);

pBest = p;
end

end
gBest = best p in P
Determine the non-dominated objective values
Update the no. of non-dominated solutions in archive
For each particle p in P do

v = v + c1 *rand*(pBest − p) + C2 *rand*(gBest-P);
p = p+v;

end
end
Using TOPSIS method convert the archive multi objectives into single objective (closeness value) and display
the optimum SVR model based on highest closeness value
Print the best solution.

Algorithm 4: TOPSIS Method

Read objectives matrix—Ork with weights (Wk) and type of objectives (OT)
For each Alternate r = na

For each Response k = nr
Compute Normalized value of Ork (Nrk)
Calculate Performance Matrix (Ark)

End
End
For each Response k = nr

Determine positive ideal (Pk) and negative ideal solution (Mk)
End
For each Alternate r = na

Determine Ideal (SPr) and negative ideal separation (SMr)
Compute Relative Closeness (Rr)
End
Arrange alternatives in descending order based on Rr
Display the alternate which has highest Rr value

3. Results and Discussions

MATLAB codes were developed for the MFO algorithm, which has been executed
repeatedly 30 times. Each time, there are 100 solutions in an archive, and one best solution
is selected using the TOPSIS [25] method; hence, the 30 best solutions obtained by the
MFO algorithm are shown in Table 6 for response L (crack length) and similarly for other
responses; D (crack depth) and W (crack width) are presented in Tables 7 and 8. Out of
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these 30 solutions, the best one is selected again using the TOPSIS method for all of the
responses. It is confirmed from Figure 4 that the highest closeness values are obtained for
the MFO algorithm as compared to the DFO [26] and PSO [27] algorithms. The convergence
plot for three different performance measures is shown in Figure 5.

Table 6. Performance of SVR model for crack length (L) using MFO algorithm.

Sl. No.
RMSE MAE R2 TOPSIS

ValueTotal Training Testing Total Training Testing Total Training Testing

1 0.0652 0.0613 0.0727 0.0564 0.0545 0.0629 0.9946 0.9914 0.9853 0.4874
2 0.0660 0.0619 0.0713 0.0544 0.0547 0.0631 0.9655 0.9778 0.9979 0.4966
3 0.0647 0.0627 0.0707 0.0547 0.0535 0.0635 0.9678 0.9965 0.9671 0.5314
4 0.0644 0.0631 0.0723 0.0569 0.0543 0.0620 0.9846 0.9634 0.9960 0.4418
5 0.0645 0.0625 0.0730 0.0558 0.0537 0.0634 0.9908 0.9999 0.9824 0.5024
6 0.0648 0.0633 0.0719 0.0558 0.0549 0.0634 0.9697 0.9891 0.9674 0.3462
7 0.0653 0.0631 0.0713 0.0568 0.0529 0.0627 0.9746 0.9823 0.9878 0.4752
8 0.0648 0.0637 0.0711 0.0545 0.0554 0.0640 0.9734 0.9657 0.9857 0.3977
9 0.0651 0.0619 0.0702 0.0566 0.0548 0.0636 0.9780 0.9935 0.9729 0.4535

10 0.0642 0.0629 0.0711 0.0567 0.0528 0.0627 0.9666 0.9890 0.9805 0.5199
11 0.0649 0.0625 0.0713 0.0548 0.0551 0.0636 0.9896 0.9767 0.9606 0.4327
12 0.0641 0.0626 0.0710 0.0553 0.0538 0.0624 0.9998 0.9999 0.9996 0.6882
13 0.0656 0.0642 0.0721 0.0560 0.0546 0.0642 0.9954 0.9726 0.9915 0.3502
14 0.0636 0.0641 0.0718 0.0547 0.0551 0.0615 0.9631 0.9833 0.9639 0.4548
15 0.0640 0.0627 0.0699 0.0545 0.0540 0.0639 0.9910 0.9876 0.9872 0.6152
16 0.0638 0.0637 0.0700 0.0552 0.0537 0.0629 0.9937 0.9945 0.9906 0.6295
17 0.0659 0.0642 0.0716 0.0553 0.0530 0.0616 0.9778 0.9684 0.9913 0.4954
18 0.0634 0.0625 0.0712 0.0545 0.0554 0.0642 0.9840 0.9803 0.9880 0.5066
19 0.0631 0.0617 0.0715 0.0561 0.0551 0.0638 0.9740 0.9770 0.9975 0.4963
20 0.0651 0.0630 0.0697 0.0557 0.0527 0.0614 0.9901 0.9696 0.9715 0.5951
21 0.0631 0.0624 0.0716 0.0569 0.0546 0.0620 0.9834 0.9903 0.9994 0.5545
22 0.0635 0.0640 0.0718 0.0548 0.0545 0.0625 0.9842 0.9917 0.9818 0.5318
23 0.0648 0.0619 0.0713 0.0567 0.0538 0.0631 0.9935 0.9754 0.9859 0.5037
24 0.0651 0.0620 0.0701 0.0560 0.0540 0.0640 0.9781 0.9727 0.9974 0.5030
25 0.0657 0.0630 0.0723 0.0563 0.0538 0.0625 0.9951 0.9792 0.9686 0.4266
26 0.0648 0.0616 0.0724 0.0552 0.0540 0.0634 0.9795 0.9711 0.9989 0.5173
27 0.0656 0.0621 0.0706 0.0555 0.0528 0.0642 0.9847 0.9663 0.9664 0.4822
28 0.0650 0.0633 0.0714 0.0545 0.0539 0.0625 0.9823 0.9758 0.9972 0.5544
29 0.0653 0.0617 0.0704 0.0566 0.0530 0.0632 0.9886 0.9714 0.9979 0.5570
30 0.0645 0.0632 0.0703 0.0554 0.0529 0.0640 0.9816 0.9697 0.9666 0.4931

Table 7. Performance of SVR model for crack depth (D) using MFO algorithm.

R.No.
RMSE MAE R2 TOPSIS

ValueTotal Training Testing Total Training Testing Total Training Testing

1 0.0620 0.0599 0.0782 0.0528 0.0496 0.0660 0.9836 0.9744 0.9836 0.6137
2 0.0631 0.0574 0.0787 0.0540 0.0508 0.0691 0.9613 0.9871 0.9587 0.4171
3 0.0631 0.0582 0.0782 0.0527 0.0493 0.0692 0.9759 0.9542 0.9561 0.4690
4 0.0634 0.0578 0.0763 0.0547 0.0502 0.0663 0.9565 0.9884 0.9838 0.5581
5 0.0642 0.0600 0.0758 0.0544 0.0511 0.0675 0.9725 0.9577 0.9765 0.3767
6 0.0638 0.0575 0.0784 0.0549 0.0488 0.0681 0.9853 0.9856 0.9519 0.4897
7 0.0644 0.0590 0.0782 0.0538 0.0489 0.0669 0.9886 0.9843 0.9867 0.5677
8 0.0618 0.0592 0.0762 0.0542 0.0488 0.0684 0.9718 0.9890 0.9716 0.5800
9 0.0623 0.0592 0.0761 0.0548 0.0504 0.0678 0.9630 0.9580 0.9728 0.4251

10 0.0631 0.0598 0.0764 0.0539 0.0502 0.0673 0.9779 0.9726 0.9753 0.4878
11 0.0647 0.0575 0.0784 0.0532 0.0490 0.0668 0.9884 0.9686 0.9814 0.5825
12 0.0641 0.0597 0.0783 0.0551 0.0507 0.0684 0.9722 0.9594 0.9851 0.2967
13 0.0631 0.0589 0.0774 0.0526 0.0503 0.0689 0.9907 0.9754 0.9664 0.5169
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Table 7. Cont.

R.No.
RMSE MAE R2 TOPSIS

ValueTotal Training Testing Total Training Testing Total Training Testing

14 0.0627 0.0593 0.0774 0.0533 0.0489 0.0684 0.9599 0.9766 0.9546 0.4781
15 0.0618 0.0579 0.0763 0.0551 0.0489 0.0673 0.9564 0.9610 0.9803 0.5524
16 0.0640 0.0589 0.0779 0.0534 0.0491 0.0691 0.9638 0.9732 0.9644 0.4242
17 0.0632 0.0594 0.0782 0.0533 0.0507 0.0668 0.9678 0.9918 0.9845 0.5149
18 0.0629 0.0585 0.0767 0.0535 0.0497 0.0672 0.9917 0.9922 0.9909 0.6852
19 0.0630 0.0586 0.0769 0.0549 0.0493 0.0691 0.9644 0.9801 0.9840 0.4726
20 0.0622 0.0576 0.0770 0.0528 0.0493 0.0668 0.9795 0.9689 0.9582 0.6559
21 0.0640 0.0575 0.0763 0.0533 0.0490 0.0667 0.9557 0.9539 0.9564 0.5229
22 0.0628 0.0592 0.0778 0.0549 0.0509 0.0690 0.9680 0.9641 0.9861 0.3616
23 0.0646 0.0596 0.0787 0.0538 0.0505 0.0661 0.9637 0.9843 0.9530 0.3937
24 0.0617 0.0593 0.0787 0.0541 0.0505 0.0669 0.9642 0.9663 0.9784 0.4637
25 0.0642 0.0583 0.0781 0.0540 0.0503 0.0679 0.9562 0.9558 0.9803 0.3697
26 0.0636 0.0601 0.0762 0.0543 0.0500 0.0666 0.9756 0.9728 0.9685 0.4663
27 0.0633 0.0588 0.0778 0.0525 0.0495 0.0680 0.9632 0.9671 0.9663 0.4892
28 0.0637 0.0601 0.0757 0.0539 0.0504 0.0686 0.9582 0.9819 0.9900 0.4453
29 0.0639 0.0575 0.0757 0.0525 0.0490 0.0676 0.9521 0.9734 0.9670 0.5811
30 0.0619 0.0579 0.0759 0.0547 0.0491 0.0681 0.9633 0.9845 0.9687 0.5781

Table 8. Performance of SVR model for crack width (W) using MFO algorithm.

R.No.
RMSE MAE R2 TOPSIS

ValueTotal Training Testing Total Training Testing Total Training Testing

1 0.0775 0.0831 0.0680 0.0639 0.0667 0.0580 0.9840 0.9787 0.9609 0.6411
2 0.0817 0.0830 0.0668 0.0654 0.0688 0.0599 0.9604 0.9855 0.9827 0.4248
3 0.0787 0.0825 0.0672 0.0647 0.0668 0.0592 0.9957 0.9901 0.9730 0.6467
4 0.0810 0.0822 0.0666 0.0669 0.0696 0.0574 0.9622 0.9962 0.9992 0.5086
5 0.0812 0.0837 0.0683 0.0639 0.0692 0.0599 0.9675 0.9709 0.9874 0.4201
6 0.0796 0.0810 0.0702 0.0671 0.0680 0.0573 0.9694 0.9745 0.9689 0.4598
7 0.0802 0.0828 0.0686 0.0671 0.0678 0.0580 0.9625 0.9909 0.9727 0.4465
8 0.0817 0.0808 0.0665 0.0666 0.0698 0.0580 0.9661 0.9854 0.9742 0.4744
9 0.0788 0.0804 0.0690 0.0668 0.0673 0.0578 0.9753 0.9618 0.9930 0.5537

10 0.0810 0.0815 0.0691 0.0668 0.0680 0.0582 0.9672 0.9716 0.9719 0.4151
11 0.0803 0.0836 0.0688 0.0671 0.0695 0.0572 0.9614 0.9819 0.9837 0.4101
12 0.0783 0.0832 0.0685 0.0662 0.0668 0.0579 0.9666 0.9961 0.9806 0.5763
13 0.0772 0.0832 0.0667 0.0642 0.0676 0.0605 0.9631 0.9882 0.9814 0.5732
14 0.0777 0.0830 0.0670 0.0658 0.0664 0.0575 0.9927 0.9993 0.9744 0.6982
15 0.0796 0.0835 0.0700 0.0659 0.0696 0.0579 0.9672 0.9756 0.9802 0.3904
16 0.0792 0.0836 0.0684 0.0660 0.0665 0.0579 0.9939 0.9824 0.9805 0.5847
17 0.0782 0.0831 0.0689 0.0653 0.0682 0.0594 0.9694 0.9715 0.9875 0.4838
18 0.0808 0.0846 0.0685 0.0669 0.0682 0.0604 0.9701 0.9695 0.9994 0.3360
19 0.0797 0.0843 0.0677 0.0652 0.0683 0.0602 0.9936 0.9885 0.9893 0.4873
20 0.0818 0.0847 0.0690 0.0659 0.0681 0.0576 0.9698 0.9806 0.9882 0.4237
21 0.0794 0.0839 0.0665 0.0650 0.0683 0.0574 0.9683 0.9609 0.9849 0.5471
22 0.0790 0.0812 0.0667 0.0677 0.0669 0.0573 0.9909 0.9961 0.9777 0.6279
23 0.0787 0.0820 0.0678 0.0651 0.0675 0.0583 0.9999 0.9999 0.9999 0.7137
24 0.0817 0.0842 0.0680 0.0658 0.0669 0.0597 0.9912 0.9706 0.9794 0.4298
25 0.0785 0.0820 0.0669 0.0641 0.0668 0.0605 0.9958 0.9921 0.9778 0.6317
26 0.0792 0.0848 0.0696 0.0656 0.0688 0.0585 0.9674 0.9625 0.9847 0.3872
27 0.0813 0.0845 0.0697 0.0645 0.0686 0.0596 0.9934 0.9677 0.9944 0.4132
28 0.0809 0.0814 0.0674 0.0640 0.0663 0.0589 0.9947 0.9771 0.9864 0.6391
29 0.0771 0.0842 0.0683 0.0646 0.0701 0.0589 0.9893 0.9609 0.9864 0.5007
30 0.0773 0.0830 0.0669 0.0654 0.0671 0.0574 0.9766 0.9855 0.9850 0.6881
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(c) Response L-PSO; (d) Response D-MFO; (e) Response D-DFO; (f) Response D-PSO; (g) Response
W-MFO; (h) Response W-DFO; (i) Response W-PSO.

Figure 4a–c. represent the statistical distribution of closeness values obtained for
30 runs from Minitab 19 software using MFO, DFO and PSO algorithms for response L.
Similar representation for responses D and W are illustrated in Figure 4d–f. and Figure 4g–i.
respectively. It is observed that all of the p-values are greater than 0.05, which shows that
the closeness values are normally distributed. This confirmed that the results obtained
by the MFO, DFO, and PSO algorithms are accepted. Figure 5a–c. illustrate the closeness
values obtained for various responses using MFO, DFO, and PSO algorithms for responses
L, D and W respectively. It is understood that, in most of the runs, the MFO has the
highest closeness value as compared to the DFO and PSO algorithms. Based on the highest
closeness value, the best SVR model has been selected for each response, L, D, and W, and
presented in Table 9. Using these models, the predicted response values are calculated and
represented in Figure 6. The actual training data set of responses, L, D, and W, with their
predicted values are plotted in Figure 6a–c. A similar representation is shown for the testing
data set in Figure 6d–f. The predicted values of L and W are closer to the actual value in
the training data set compared with response D. In the testing data set, out of 29 samples of
response W, almost all predicted values are closer to the actual values, whereas in L, out of
20 samples, 14 are closer, and in D, it is only 7 out of 25. It is inferred that the SVR models
developed to predict the response values of L and W are more accurate compared to D.
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The probability plots shown in Figure 7a–c. reveal that the results obtained using MFO for
30 runs are normally distributed for trainnig data set of responses L, D and W. Figure 7d–f.
represent probability plots for testing data set of responses L, D and W, it also show the
results are normally distributed; hence, the developed SVR models are appropriate. The
three performance measures of SVR models for responses, L, D, and W, are presented in
Figure 8a–c. It is reported that RMSE values of 0.071, 0.0767, and 0.0678 were obtained in
the testing data set of responses L, D, and W, respectively. Lesser MAE values of 0.0624,
0.0672, and 0.0583 and higher R2 values of 0.9996, 0.9909, and 0.9999 were reported in the
testing data set. Figure 9 illustrates the convergence plot of performance measures for three
responses, L, D, and W, for the total, training, and testing data sets. It is observed from
Figure 9a–c that the convergence occurred on the 34th, 41st, and 34th iterations in the MFO
algorithm, whereas, in DFO, it occurred on the 52nd, 52nd, and 55th iterations in response
L. It is confirmed from Figure 9d–f. that the convergence occurred on the 40th, 54th, and
48th iterations in the MFO algorithm, whereas, in DFO, it occurred on the 61st, 43rd, and
63rd iterations in response D. It is evident from Figure 9g–i. that the convergence occurred
on the 40th, 41st and 45th iterations in the MFO algorithm, whereas, in DFO, it occurred on
the 61st, 57th, and 67th iterations in response W. It is confirmed from Figure 9a–c. that the
convergence occurred in PSO for response L will be at the 89th, 63rd and 87th iterations for
RMSE, MAE, and R2 values that are higher than the convergence iteration numbers in the
MFO algorithm. It is also observed from Figure 9d–i. that the convergence occurred in a
higher iteration number in the case of response D and W in the PSO algorithm compared
with the MFO. Hence, the MFO algorithm outperformed compared to the DFO algorithm
in the convergence of objective values.
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Table 9. Best Parameters of the SVR model for responses L, D, and W.

Response Kernel
Function Solver Validation

Scheme
Validation’s Scheme

Parameter
% of Test

Data
No. of Test

Data

L Linear SMO Holdout 14 17.1 20
D Linear SMO Holdout 16 21.7 25
W Linear SMD Holdout 15 25.2 29

Appl. Sci. 2022, 12, 12375 18 of 28 
 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 6. Comparison of actual and predicted values for (a) Training Dataset-Response L; (b) 
Training Dataset-Response D; (c) Training Dataset-Response W; (d) Testing Dataset-Response L; 
(e) Testing Dataset-Response D; (f) Testing Dataset-Response W. 

Figure 6. Comparison of actual and predicted values for (a) Training Dataset-Response L; (b) Training
Dataset-Response D; (c) Training Dataset-Response W; (d) Testing Dataset-Response L; (e) Testing
Dataset-Response D; (f) Testing Dataset-Response W.



Appl. Sci. 2022, 12, 12375 17 of 25
Appl. Sci. 2022, 12, 12375 19 of 28 
 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 7. Probability Plot for (a) Training Dataset-Response L; (b) Training Dataset-Response D; 
(c) Training Dataset-Response W; (d) Testing Dataset-Response L; (e) Testing Dataset-Response D; 
(f) Testing Dataset-Response W. 

Figure 7. Probability Plot for (a) Training Dataset-Response L; (b) Training Dataset-Response D;
(c) Training Dataset-Response W; (d) Testing Dataset-Response L; (e) Testing Dataset-Response D;
(f) Testing Dataset-Response W.



Appl. Sci. 2022, 12, 12375 18 of 25
Appl. Sci. 2022, 12, 12375 20 of 28 
 

  

(a) (b) 

 

(c) 

Figure 8. Performance measures of SVR models (a) RMSE; (b) MAE; (c) R2. 

  

Figure 8. Performance measures of SVR models (a) RMSE; (b) MAE; (c) R2.

Appl. Sci. 2022, 12, 12375 21 of 28 
 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 9. Cont.



Appl. Sci. 2022, 12, 12375 19 of 25

Appl. Sci. 2022, 12, 12375 21 of 28 
 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Appl. Sci. 2022, 12, 12375 22 of 28 
 

  

(g) (h) 

 

(i) 

Figure 9. Convergence plot of performance of SVR for (a) Response L—RMSE; (b) Response L—
MAE; (c) Response L—R2; (d) Response D—RMSE; (e) Response D—MAE; (f) Response D—R2; (g) 
Response W—RMSE; (h) Response W—MAE; (i) Response W—R2. 
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Quantitative Comparison of MFO with DFO and PSO Algorithms

The performance of the MFO algorithm is compared with the DFO and PSO algorithms
using two quantitative metrics, namely diversity and spacing [28]. Diversity indicates the
spread of the Pareto solutions produced by an algorithm. The higher the value of diversity
confirmed the better performance of the algorithm. The mathematical representation is
given in Equation (18). Spacing is a straightforward method to compute the distance
between the point and its closest neighbor. The minimum value of spacing indicates the
better performance of the algorithm. The value of spacing is calculated using Equation (19).
Table 10 represents the diversity and spacing values of the MFO, DFO, and PSO algorithms.

Div = ∑np
i=1(Pimax − Pimin)

2 (18)

where

Pimax—Maximum value of ith performance measures
Pimin—Minimum value of ith performance measures
np—number of performance measures

SP =

√
1

np− 1 ∑np
i=1

(
D− Di

)2 (19)

where

D =
∑

np
i=1 Di

np

Di = min
i=1,2,...np

{
nr

∑
j=1

abs
(

Pij − Pkj

)}
k=i+1,...np

where nr—Number of runs, I—index for a no. of performance measures, J—index for a no.
of runs.

Table 10. Comparison of performance of algorithms using performance indicators.

Response Algorithms Diversity Spacing

L
MFO 0.0652 0.0053
DFO 0.0644 0.0054
PSO 0.0648 0.0057

D
MFO 0.0679 0.0026
DFO 0.0664 0.0058
PSO 0.0653 0.0062

W
MFO 0.0685 0.0063
DFO 0.0676 0.0066
PSO 0.0680 0.0073

It is understood from Table 10 that the diversity value of the MFO algorithm is high
compared to both the DFO and PSO algorithms in all of the three-response values, L, D,
and W. Furthermore, the spacing value is less in the MFO algorithm for all three responses.
Hence, it is confirmed that the MFO algorithm outperformed compared with both the DFO
and PSO algorithms. The statistical analysis of three performance measures for training,
testing, and total data sets for the MFO, DFO, and PSO algorithms are represented in
Tables 11–13. The best values of three performance measures, RMSE, MAE, and R2 are
0.0544, 0.0527, and 0.9999, respectively, for response L in the MFO algorithm, whereas in
the DFO algorithm, the values are 0.0626, 0.0539, and 0.9993, and in the PSO algorithm,
the values are 0.0626, 0.0538, and 0.9993. It is confirmed that the MFO algorithm is good
compared to the DFO and PSO algorithms in predicting the response L. This is true for
response W in the DFO algorithm, but in the PSO algorithm, both the RMSE and MAE
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values are lower compared with the MFO algorithm. In the case of response D in the DFO
and PSO algorithms, the RMSE and MAE values are a little bit low compared to the MFO
algorithm, but in the meantime, the R2 value is higher than in the DFO and PSO algorithms.
In overall performance, the SVR models developed by the MFO algorithm outperformed
compared to the DFO and PSO algorithms.

Table 11. Statistical analysis of output obtained by the MFO algorithm.

Response Statistics

MFO

RMSE MAE R2

Total Training Testing Total Training Testing Total Training Testing

L

Mean 0.0647 0.0628 0.0713 0.0556 0.0540 0.0631 0.9825 0.9807 0.9842
StDev 0.0008 0.0008 0.0009 0.0009 0.0008 0.0008 0.0100 0.0108 0.0126

Minimum 0.0631 0.0613 0.0697 0.0544 0.0527 0.0614 0.9631 0.9635 0.9606
Q1 0.0641 0.0620 0.0706 0.0548 0.0534 0.0625 0.9744 0.9713 0.9708

Median 0.0648 0.0627 0.0713 0.0556 0.0540 0.0631 0.9837 0.9785 0.9865
Q3 0.0652 0.0633 0.0718 0.0565 0.0547 0.0638 0.9908 0.9906 0.9973

Maximum 0.0660 0.0642 0.0730 0.0569 0.0554 0.0642 0.9998 0.9999 0.9996
Range 0.0028 0.0029 0.0033 0.0025 0.0027 0.0029 0.0367 0.0365 0.0390

D

Mean 0.0804 0.0843 0.0697 0.0668 0.0693 0.0597 0.9767 0.9771 0.9810
StDev 0.0011 0.0012 0.0009 0.0010 0.0010 0.0008 0.0121 0.0128 0.0125

Minimum 0.0787 0.0821 0.0678 0.0653 0.0675 0.0583 0.9603 0.9600 0.9600
Q1 0.0792 0.0834 0.0689 0.0659 0.0684 0.0590 0.9658 0.9667 0.9712

Median 0.0804 0.0846 0.0699 0.0668 0.0695 0.0598 0.9743 0.9750 0.9809
Q3 0.0813 0.0853 0.0704 0.0675 0.0701 0.0603 0.9844 0.9927 0.9945

Maximum 0.0824 0.0861 0.0711 0.0683 0.0707 0.0611 0.9997 0.9970 0.9997
Range 0.0037 0.0039 0.0033 0.0031 0.0032 0.0028 0.0394 0.0371 0.0398

W

Mean 0.0796 0.0830 0.0681 0.0657 0.0680 0.0586 0.9775 0.9804 0.9829
StDev 0.0015 0.0012 0.0011 0.0011 0.0011 0.0011 0.0134 0.0120 0.0092

Minimum 0.0771 0.0804 0.0665 0.0639 0.0663 0.0572 0.9604 0.9609 0.9609
Q1 0.0784 0.0820 0.0669 0.0646 0.0669 0.0575 0.9670 0.9708 0.9769

Median 0.0795 0.0831 0.0681 0.0657 0.0680 0.0581 0.9699 0.9812 0.9832
Q3 0.0810 0.0840 0.0689 0.0668 0.0688 0.0596 0.9929 0.9903 0.9877

Maximum 0.0818 0.0848 0.0702 0.0677 0.0701 0.0605 0.9999 0.9999 0.9999
Range 0.0046 0.0044 0.0037 0.0039 0.0038 0.0033 0.0396 0.0390 0.0390

Table 12. Statistical analysis of output obtained by the DFO algorithm.

Response Statistics

DFO

RMSE MAE R2

Total Training Testing Total Training Testing Total Training Testing

L

Mean 0.0656 0.0640 0.0729 0.0565 0.0549 0.0643 0.9806 0.9840 0.9850
StDev 0.0010 0.0008 0.0009 0.0007 0.0008 0.0009 0.0125 0.0130 0.0101

Minimum 0.0641 0.0626 0.0711 0.0554 0.0539 0.0625 0.9611 0.9613 0.9637
Q1 0.0647 0.0633 0.0725 0.0558 0.0542 0.0635 0.9709 0.9734 0.9776

Median 0.0657 0.0640 0.0728 0.0566 0.0545 0.0644 0.9787 0.9865 0.9878
Q3 0.0666 0.0646 0.0738 0.0570 0.0555 0.0650 0.9931 0.9967 0.9930

Maximum 0.0672 0.0655 0.0743 0.0580 0.0565 0.0654 0.9993 0.9993 0.9983
Range 0.0031 0.0030 0.0033 0.0026 0.0026 0.0029 0.0382 0.0380 0.0347
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Table 12. Cont.

Response Statistics

DFO

RMSE MAE R2

Total Training Testing Total Training Testing Total Training Testing

D

Mean 0.0644 0.0598 0.0787 0.0549 0.0510 0.0690 0.9737 0.9714 0.9741
StDev 0.0008 0.0008 0.0012 0.0007 0.0008 0.0010 0.0120 0.0112 0.0113

Minimum 0.0630 0.0585 0.0767 0.0537 0.0497 0.0674 0.9531 0.9535 0.9518
Q1 0.0637 0.0591 0.0778 0.0544 0.0503 0.0680 0.9629 0.9626 0.9664

Median 0.0643 0.0599 0.0789 0.0548 0.0511 0.0693 0.9760 0.9699 0.9726
Q3 0.0651 0.0606 0.0797 0.0554 0.0519 0.0700 0.9846 0.9797 0.9842

Maximum 0.0658 0.0612 0.0803 0.0561 0.0522 0.0705 0.9906 0.9917 0.9905
Range 0.0028 0.0027 0.0036 0.0024 0.0024 0.0032 0.0375 0.0382 0.0387

W

Mean 0.0804 0.0843 0.0697 0.0668 0.0693 0.0597 0.9767 0.9771 0.9810
StDev 0.0011 0.0012 0.0009 0.0010 0.0010 0.0008 0.0121 0.0128 0.0125

Minimum 0.0787 0.0821 0.0678 0.0653 0.0675 0.0583 0.9603 0.9600 0.9600
Q1 0.0792 0.0834 0.0689 0.0659 0.0684 0.0590 0.9658 0.9667 0.9712

Median 0.0804 0.0846 0.0699 0.0668 0.0695 0.0598 0.9743 0.9750 0.9809
Q3 0.0813 0.0853 0.0704 0.0675 0.0701 0.0603 0.9844 0.9927 0.9945

Maximum 0.0824 0.0861 0.0711 0.0683 0.0707 0.0611 0.9997 0.9970 0.9997
Range 0.0037 0.0039 0.0033 0.0031 0.0032 0.0028 0.0394 0.0371 0.0398

Table 13. Statistical analysis of output obtained by the PSO algorithm.

Response Statistics

PSO

RMSE MAE R2

Total Training Testing Total Training Testing Total Training Testing

L

Mean 0.0658 0.0640 0.0726 0.0567 0.0549 0.0639 0.9802 0.9800 0.9816
StDev 0.0009 0.0009 0.0009 0.0008 0.0007 0.0009 0.0107 0.0104 0.0122

Minimum 0.0642 0.0626 0.0710 0.0553 0.0538 0.0625 0.9600 0.9621 0.9609
Q1 0.0654 0.0634 0.0721 0.0561 0.0542 0.0631 0.9721 0.9699 0.9727

Median 0.0660 0.0639 0.0726 0.0568 0.0547 0.0640 0.9809 0.9810 0.9842
Q3 0.0665 0.0647 0.0732 0.0573 0.0555 0.0646 0.9898 0.9883 0.9903

Maximum 0.0672 0.0656 0.0743 0.0579 0.0562 0.0653 0.9980 0.9972 0.9993
Range 0.0030 0.0031 0.0033 0.0026 0.0024 0.0029 0.0380 0.0351 0.0384

D

Mean 0.0660 0.0640 0.0729 0.0568 0.0552 0.0642 0.9818 0.9836 0.9779
StDev 0.0009 0.0009 0.0010 0.0008 0.0008 0.0007 0.0118 0.0120 0.0109

Minimum 0.0643 0.0627 0.0710 0.0554 0.0538 0.0628 0.9632 0.9612 0.9610
Q1 0.0653 0.0633 0.0720 0.0563 0.0545 0.0637 0.9723 0.9769 0.9693

Median 0.0663 0.0638 0.0729 0.0568 0.0553 0.0643 0.9802 0.9851 0.9775
Q3 0.0668 0.0648 0.0737 0.0574 0.0560 0.0649 0.9931 0.9941 0.9846

Maximum 0.0672 0.0654 0.0745 0.0580 0.0565 0.0655 0.9993 0.9996 0.9987
Range 0.0030 0.0027 0.0035 0.0026 0.0027 0.0028 0.0361 0.0386 0.0377

W

Mean 0.0642 0.0626 0.0713 0.0554 0.0541 0.0626 0.9826 0.9793 0.9811
StDev 0.0008 0.0008 0.0011 0.0008 0.0008 0.0010 0.0134 0.0111 0.0105

Minimum 0.0629 0.0613 0.0696 0.0542 0.0528 0.0612 0.9612 0.9607 0.9603
Q1 0.0635 0.0621 0.0703 0.0549 0.0534 0.0619 0.9698 0.9698 0.9773

Median 0.0641 0.0626 0.0711 0.0553 0.0541 0.0624 0.9860 0.9808 0.9813
Q3 0.0647 0.0630 0.0722 0.0560 0.0547 0.0636 0.9932 0.9871 0.9879

Maximum 0.0656 0.0644 0.0730 0.0568 0.0554 0.0643 0.9998 0.9998 0.9996
Range 0.0027 0.0030 0.0034 0.0026 0.0026 0.0030 0.0386 0.0393 0.0393

The comparison of the performance measures of the proposed method using MFO
(PM-MFO) and the existing method using Feed Forward Back Propagation (EX-FFBP) by
Daniel et al. [1] is illustrated in Figure 10. It is understood that, for the tested data set, the
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proposed method performed well for responses L in Figure 10a and for response W in
Figure 10c as compared to response D in Figure 10b.
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4. Conclusions

In this work, SVR models have been developed to predict the length, depth, and width
of the defect images using the given GLCM features extracted from MFL images. Five
different parameters that decide the performance of SVR have been considered and three
various performance measures, RMSE, MAE, and R2 values, are taken into consideration to
evaluate the performance of the SVR models. The MFO algorithm is implemented to find
the best parameters of SVR models, and both DFO and PSO algorithms are used to compare
the performance of the MFO algorithm. The normality test, probability, and residual plots
have ensured that the results obtained using these algorithms are normally distributed and
hence, accepted. The convergence, diversity, and spacing of performance measures are
considered to evaluate the betterment of the functioning of the MFO with the DFO and
PSO algorithms. Low convergence, a high value of diversity, and a low value of spacing
reported at 34 iterations, 0.0685 and 0.0026, respectively, obtained with the MFO algorithm
confirmed that it outperformed the DFO and PSO algorithms. The reported values of the
three performance measures of SVR models, RMSE, MAE, and R2 values of responses L, D,
and W using the MFO algorithm, are 0.0527, 0.0613, and 0.9999. These lower values in both
RMSE and MAE and high values in R2 confirmed the performance of the MFO algorithm.
Furthermore, in comparing the performance measures with the existing FFBP method, the
proposed MFO–SVR method proved its effectiveness in responses L and W. The proposed
SVR model is not suitable for a very large dataset, and all the features have been considered
without finding the priority features. As a future work, this work can be extended further
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by adding the other additional features of GLSM extracted from the MFL image with data
augmentation for different L, D, and W. Furthermore, features can be prioritized using the
existing different algorithms, and based on that, the performance of the SVR models can be
studied further.
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