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Abstract: This paper presents the design, development, and optimization of a 3D printed micro
horizontal axis wind turbine blade made of PLA material. The objective of the study was to produce
100 watts of power for low-wind-speed applications. The design process involved the selection of
SD7080 airfoil and the determination of the material properties of PLA and ABS. A structural analysis
of the blade was carried out using ANSYS software under different wind speeds, and Taguchi’s L16
orthogonal array was used for the experiments. The deformation and equivalent stress of the PLA
material were identified, and the infill percentage and wind speed velocity were optimized using the
moth-flame optimization (MFO) algorithm. The results demonstrate that PLA material has better
structural characteristics compared to ABS material. The optimized parameters were used to fabricate
the turbine blades using the fusion deposition modeling (FDM) technique, and they were tested in a
wind tunnel.

Keywords: fusion deposition modeling; micro horizontal axis wind turbine; airfoil profile; MFO;
PSO; structure analysis

1. Introduction

The advancement of miniature modern technology in the fields of engineering and
medicine often necessitates high-performance energy consumption, a key part of most
human activities. The consumption of energy involves converting one form of energy
into another, mainly the conversion of mechanical energy into electrical energy. In a
thermal power plant, the main role is the conversion of chemical energy into heat in the
combustor, heat into mechanical energy in the turbine, and mechanical energy into electrical
energy in the generator. This satisfies the power demand of commercial and industrial
electrical applications [1]. However, fossil fuels are non-renewable, too expensive, and
cause environmental pollution. In recent decades, a great deal of importance has been given
to renewable energy system research, even though it is seasonal or time-dependent and
difficult to generate a large quantity of electricity when compared with traditional fossil-
fuel generators. Renewable energy is mainly considered due to its environmental benefits
and the fact that it never runs out. In recent years, the micro wind turbine, which generates
power even at low wind speeds, has attracted more attention from many researchers for
commercial applications, especially in remote areas. The power generated through the
micro wind turbine can be used in streetlights, battery reserves, and lamp posts built on
national and state highways. Over a long span of operation, the expense associated with
the installation of the micro wind turbine can be acquired through the amount of electricity
generated. Decentralization of power generation can be achieved by installing micro wind
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turbines at remote locations, and this newer technology reduces the cost of establishment
and power transmission losses. The conventional manufacturing technology involves more
material, labor, and machinery, and the manufacturing plant itself requires huge investment.
In order to minimize the cost for manufacturing micro and small-scale wind turbines, this
research work proposes using newer 3D printing technology. The material selection plays a
vital role in the design process of a micro wind turbine. The mass of the micro wind turbine
depends on the infill condition of the geometry. It is understood that less infill reduces the
mass, and more infill increases the mass. However, an optimum infill condition is required
to achieve better performance and a reduced cost. Based on the literature, studies were
performed on the structural analysis of micro wind turbines by using experimental and
numerical techniques, particularly at low wind speeds. The wind turbine blade stability and
life were predicted using structural analysis. The location experiencing the highest stress
intensity was identified by additional structural analysis, using the finite element method.
Optimization techniques such as the moth-flame optimization (MFO) algorithm helped to
predict the optimal operating conditions and design parameters. The effectiveness of the
MFO algorithm was proven by comparing it with particle swarm optimization (PSO). The
literature review on wind turbine blades and 3D printing is presented in this section. The
problem statement and methodology are reported in Sections 2 and 3, respectively. The
detailed results and discussion are presented in Section 4.

1.1. Wind Turbine Blade

A structural analysis of the wind turbine blade with respect to various design factors
was performed by various researchers [2–7]. Using the finite element method, Park [2]
compared the structural stability of a flax–epoxy composite blade with a glass–epoxy
composite blade and reported the flax–epoxy composite blade performed better in terms
of safety and structural stability. The significance of chord length and twist angle on both
structural and aerodynamic characteristics is reported in [3]. Chen and Kam [4] presented
an incremental loading procedure to study the progressive failure of a small, composite
sandwich wind blade. Ullah et al. [5] reported that the higher stress level in the shear
web can be minimized by increasing the number of biaxial plies, optimizing the blade
geometry, and changing the position of shear webs, which have a profound effect on the
overall performance and structural integrity of the blade. A structural stress analysis of
the wind load at an extreme wind speed was reported by Wu and Young [6]. Through
a fluid–structure interaction study, blade deformations and stresses were examined by
Lipian et al. [7], and the influence of blade deformation on rotor performance was reported.

Mamouri et al. [8] focused on dynamic stall in offshore wind turbine blades and
used the entropy generation rate as a tool for analysis and design, showing that some
airfoils have a lower drag coefficient. In another work, Mamouri et al. [9] examined
the entropy generation of three offshore wind turbine airfoils at various angles of attack,
revealing that flow separation has a large impact on the viscous entropy generation rate
and that the SD7062 airfoil has the lowest entropy generation rate at large angles of attack.
Mamouri et al. [10] examined the aerodynamic coefficients of an oscillating wind turbine
airfoil by conducting experiments and focusing on the effective parameters that affect the
lift and drag coefficients in the blades, showing that a more suitable airfoil could be chosen
based on the wind turbine’s rotation frequency. Suresh and Rajakumar [11] investigated
10 different types of airfoils for a maximum power coefficient with respect to the angle of
attack and wind speed. Rahman et al. [12] studied the total deformation and maximum
principal stress per unit mass with respect to three different airfoils (S811, S822, and S826)
and two different materials (structural steel and aluminum alloy) for three and five blade
configurations. The theoretical and experimental investigation of micro wind turbines for
the low-speed region was investigated by [13]. They reported that replacing the wind-
turbine-swept area with an equivalent array of micro wind turbines harnessed more wind
energy. Singh and Ra [14] investigated the power coefficient with respective pitch angles
and low wind velocity ranges of 3–6 m/s. They reported that the new two-bladed rotor



Materials 2023, 16, 2508 3 of 22

produced more electric power compared with the baseline three-bladed rotor at the same
free stream velocity. Improved performance due to multiple blade designs for a micro
wind turbine at low wind speeds of 3–14 m/s is reported in [15], which addresses some
innovative blade designs.

1.2. Three-Dimensional Printing

Complex geometric shapes can be fabricated using 3D printing with various mate-
rials. To create a multifunctional part in a traditional manufacturing system, separate
traditional processes are required, whereas 3D printing can achieve production in a single
step without post processing [16]. A highly complicated geometry can be manufactured
using 3D printing technology, which is known as a solid freeform manufacturing technol-
ogy based on layer-by-layer fabrication using computer-aided design data [17]. Additive
manufacturing technology is cost-effective and highly flexible. Three-dimensional printing
applications are extended to the concept modeling, functional prototyping, and digital
manufacturing stages [18]. The requirements are translated into physical form within a
specified time, and the functional prototype model shows the structure and performance
prior to mass production [19]. Three-dimensional printing eliminates tool and mold costs,
and it transforms low-volume production through mass customization [20]. Physical part
stocks are replaced by digital files that can be printed [21]. Three-dimensional printing
produces prototypes and functional parts through the addition of materials layer by layer,
using raw materials in the form of a liquid, powder, or sheets. The model can be created
in CAD software based on the original design or from a 3D scan. The model is converted
into a compatible digital file called a stereolithography file (STL). The model is then ex-
ported to slicing software to generate a machine G-code, which contains the information
on tool paths and makes the object layer by layer in three dimensions [22]. Various 3D
printing technologies and materials are used for different applications, and the selection of
technology and materials is a challenging task. The dimensional accuracy, surface finish,
and post-processing requirements are different for various applications. The widest range
of materials among the existing 3D printing technologies belongs to polymers, such as
thermoplastic and thermoset polymers. Additive manufacturing technology has the ability
to print large structures while reducing defects and improving mechanical properties [23].
There are more opportunities for 3D printing composite materials. Additive manufacturing
is compatible with fiber reinforcement using polymer powders and filaments [24].

The cost, strength, filament cost, and weather resistance of the printer are all taken
into consideration when choosing the print medium for a wind turbine [25]. The most
popular plastics used in 3D printing are ABS (acrylonitrile butadiene styrene) and PLA
(polylactic acid), and most extruders are capable of reliably extruding these materials with
ease. The 3D printed wind turbine designed herein uses ABS and PLA materials, which
were chosen because of their inexpensive cost, high availability, and compatibility with
standard printers. The PLA’s low requirements for bed temperature are a large advantage
because they allow for printing without a heated printing bed. The cost of printers without
heated print beds is considerably lower than the cost of heated ones. Three-dimensional
wind turbine blade production using FDM is cost-effective, depending on volume, and
requires only 6–12 h to produce one one-meter blade; it takes 5–7 days to print three turbine
blades [26]. The cutting edges of turbine blades are generated by 3D printing in relation
to globalization. This technology will benefit from the printing of turbine blades and
streamline the construction process. Engineering software aids in creating precise design
specifications for the deployment of 3D printed wind turbines. A small-scale horizontal
axis wind turbine was developed and produced based on an additive manufacturing
background. The production of a turbine using ABS filament has a low overhead cost and
can be finished in the short time of 28 h and 44 min [27].

This editorial provides a swift archetype of a wind turbine with the required parame-
ters by providing numerical models of a wind turbine rotor [28]. A 3D printing method
was used, and the product was tested in a domestic wind tunnel. The overall process
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was completed within one day. Smart prototype vertical axis wind turbines are designed
with the highest throughput in terms of a flexible and quality design, low weight, and
quick execution in printing time [29]. An efficient model was developed based on fused
deposition modeling for easy access and a lower cost.

Moreover, the review article [30] elucidates the various design factors affecting the
performance of a wind turbine. From the literature review, it is understood that various
factors governing the power output from the turbine are the blade material, pitch, the twist
angle of the blade, wind speed, number of blades, and types of airfoils [31]. In particular,
blade material receives more attention due to various factors such as structural importance,
the conversion of wind load into torque over the rotor, cost, and availability.

1.3. Moth-Flame Optimization Algorithm

Parametric optimization has been carried out by various authors using various evolu-
tionary algorithms [32–34]. Among those algorithms, the recently developed moth-flame
optimization (MFO) algorithm was most commonly used among researchers. The major
source of inspiration for this optimizer was the transverse orientation navigation approach
used by moths in nature [35]. Moths fly at night by maintaining a steady angle with the
moon, which is a very effective technique for travelling vast distances in a straight line.
This behavior of moths was used to effectively optimize the process parameters through
the MFO algorithm. The different variants of the MFO algorithm and its applications were
discussed by [36].

Yıldız and Yıldız [37] maximized the rate of profit while performing multi-tool milling
operations by using the MFO algorithm. The effectiveness of the MFO algorithm was
confirmed through the optimization results. Sivalingam et al. [38] used the MFO algorithm
to select the optimal set of turning parameters while machining the Hastelloy X material
in different machining environments. They compared the results of the MFO algorithm
with the results of other evolutionary algorithms such as the genetic, grasshopper, grey
wolf, and particle swarm optimization algorithms. This comparison showed that the MFO
algorithm outperformed others.

2. Problem Statement

The aerodynamic and gravitational loads acting on the blade are considered important
design factors in the installation of a wind turbine blade. The dynamic effect of these
loads affects the structural rigidity of the blade. The type of materials and the material
properties used for manufacturing the blade play a vital role in the structural design and
cost of the micro wind blade. The fabrication of the wind blade, which works under low
wind speeds for minimum power generation, is also a challenging task. The selection
of the correct airfoil blade involves significant testing or simulation of the profile under
different working conditions [39]. Testing a blade in a wind tunnel for different materials
at various wind speeds is a very tedious job for manufacturers. Accurately measuring the
deformation and stress developed during the dynamic running condition of the blade is
very tough work. Three-dimensional printing is a newer technology that could reduce
the cost of the production of micro and small-sized wind turbine blades and assure the
structural characteristics of the wind turbine in various operating conditions. It is necessary
to identify the conditions in which micro wind turbines produce more power based on the
3D printing material selection, infill condition, and wind velocity.

3. Methodology
3.1. Experiments

In this study, SD7080 airfoil was considered a suitable blade profile for producing
high power in low-wind-speed applications. Based on the requirements, an aerodynamic
analysis was performed using Q-Blade software on 10 selected airfoils: Aquila, BW-3, E387,
FX63-137, NACA0012, NASA LS-0413, RG-15, S1223, SD7080, and SG6043 at a Reynolds
number of 81,712. The lift coefficient (CL) and lift/drag ratio (cl/cd) of these airfoils were
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analyzed at various angles of attack at the Reynolds numbers 30,642, 40,856, 51,070, 61,284,
71,498, and 81,712. It was found that the SD7080 airfoil had the highest power coefficient
relative to other airfoils at various Reynolds numbers for a tip speed ratio in the range of 5
to 8. The maximum power coefficient of 0.29 was achieved at Re = 40,856 at a tip speed
ratio in the range of 5–8 for the SD7080 airfoil [11].

From the numerical simulation, it was concluded that SD7080 was the most suitable
airfoil. Two different materials, acrylonitrile butadiene styrene (ABS) and polylactic acid
(PLA), were selected for the 3D printing manufacture of the wind turbine blades. The
properties of the blade, such as the density, Young’s modulus, and Poisson ratio for each
material presented in Table 1, were obtained using the Optimatter tool by varying the infill
value (IF) from 10% to 100%.

Table 1. Blade properties.

Infill (%)

PLA ABS

Density
(g/m3)

Young’s
Modulus (Gpa)

Poisson
Ratio

Density
(g/m3)

Young’s
Modulus (Gpa)

Poisson
Ratio

10 0.35 0.40 0.184 0.30 0.30 0.146
40 0.65 0.70 0.256 0.56 0.50 0.216
70 0.95 1.50 0.371 0.82 0.90 0.300
100 1.25 3.00 0.552 1.08 1.70 0.417

Figure 1 represents the relationship between the properties and infill percentage of the
PLA and ABS materials. It is inferred from Figure 1a–c that the density, Young’s modulus,
and Poisson ratio values increased with an increasing infill percentage. Furthermore, for the
same infill percentage, the density, Young’s modulus, and Poisson ratio in the PL material
were higher than in the ABS material.
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The blade geometry was modeled using CREO 3.0 software, which is shown in
Figure 2. The specifications of the micro wind turbine blade are presented in Table 2.
The mechanical properties of the blade, such as the deformation (DN) and stress (SS) values,
were considered response values and measured by simulating the blade under various
wind speeds (WSs), from 2 to 14 m/s, using ANSYS 15 software. The blade material type
(MT), infill percentage (IF), and wind speed (WS) were considered parameters and varied
at different levels, as per the value shown in Table 3. It was proposed to have a mixed-level
design for experimentation. A material type with two levels, four levels of infill percentage,
and four levels of wind speed were considered.
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Table 2. Specification of micro wind turbine blade.

Parameter Range

Power 100 W
Profile SD7080 (9.2%)
Axis of rotation Horizontal
No. of Blades 5
Radius of the Blade 0.415 m
Root Chord Length 0.0802 m
Tip Chord Length 0.0280 m

Table 3. List of Parameters and its levels.

Parameter/Levels Level 1 Level 2 Level 3 Level 4

Infill (IF), % 10 40 70 100
Wind Speed (WS), m/s 2 6 10 14
Material Type (MT) 1 (ABS) 2 (PLA) - -

3.2. Finite Element Analysis

The micro wind turbine blade was designed for 100 W of power output. The design
parameters and their values are presented in Table 2. The modeling of the micro wind
turbine blades was performed in CREO software and exported to ANSYS software for
finite element analysis. The finite element analysis (FEA) was been carried out on the
wind turbine blade under various wind speeds to identify the structural characteristics,
such as deformation and stress intensity. There are three stages of finite element analysis:
pre-processing, solution, and post-processing. In the pre-processing stage, the elements,
materials, and meshing are selected. In the solution stage, the boundary conditions, loading,
and method of solving the problem are selected, and the results can be obtained in the
post-processing stage.

The wind turbine blade model was created in CREO software based on the data
provided in Table 2. Material properties were assigned to the blade geometry based on
the data presented in Table 1. The tetrahedral element was chosen for the blade geometry
meshing. Flap-wise loading on the wind turbine blade was considered for this finite
element analysis. The flap-wise loading was parallel to the axis of the rotor; therefore,
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the axial force acting on the wind turbine blade was calculated. The wind turbine blade
was designed to achieve a uniform angle of attack from root to tip, and the lift coefficient
was assumed to be constant from root to tip. The axial force was directly proportional to
the radius of the wind turbine blade. The axial force was at a maximum at the tip and a
minimum at the root. The maximum axial force was considered for the structural analysis
of the blade. The maximum axial load for the particular wind velocity on the surface of the
wind turbine blade was assumed. The axial load was calculated from the wind speed using
Equation (1).

Fx =
((π

9

)
ρD2V2

)
/A (1)

where Fx represents the pressure load (N/m2 or Pa); ρ represents the air density; D repre-
sents the blade diameter, m; V represents the wind velocity, m/s; area of the blade, m2.

The axial load was calculated from the Equation (1) and is presented in Table 4 for a
wind speed of 1–15 m/s.

Table 4. Axial loading at various wind speeds.

Wind Speed
(m/s)

Axial Load
(N/m2)

Wind Speed
(m/s)

Axial Load
(N/m2)

Wind Speed
(m/s)

Axial Load
(N/m2)

1 12 6 446 11 1500
2 50 7 607 12 1785
3 112 8 793 13 2094
4 198 9 1004 14 2429
5 310 10 1239 15 2788

A grid-independent analysis was performed for the blade geometry, using simula-
tion results that were adequately grid-independent [40]. The tetrahedral meshing of the
blade was generated and is shown in Figure 3. Initially, the mesh was generated with
354 elements and 750 nodes. A finer mesh was then created, and a grid-independent
analysis was performed for elements 520, 605, 714, and 802. The consistency of the re-
sults was identified using a grid-independent test. The deformation and stress intensity
were consistent at 605 elements. The results of the grid-independent test are presented in
Table 5. When the mesh elements were greater than 605, the deformation was unchanged
at 0.000879 m. The results of the finite element analysis were also validated with the results
of the theoretical analysis.
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Table 5. Grid-independent analysis.

S. No. Nodes Elements Maximum Deformation (m)

1 750 354 0.000891
2 1320 520 0.000881
3 1770 605 0.000879
4 2300 714 0.000879
5 3250 802 0.000879

The structural performance of the blade material is described by the deformation and
stress intensity. Since the load is applied in the clockwise direction, the blade tends to
deform in the axial direction, and tensile stress develops in the region of the hub. The
boundary conditions were applied as follows: the hub of the blade was fixed, i.e., rotation
and translation were arrested at the hub. Flap-wise loading was applied on the surface of
the wind turbine blade. The flap-wise loading was varied at various wind velocities, as
shown in Table 4. A static structural analysis was performed for a wind velocity ranging
from 1 to 15 m/s and for various infill percentages from 10 to 100%. The deformation in
the axial direction and the stress intensity at the wind velocity varied from 1–15 m/s, and
various infill percentages from 10–100% were identified for the PLA and ABS materials.
Figure 4 shows sample FEA simulation results in which the simulation outputs, such as
the deformation (DN) and stress intensity (SS) developed on the blade, were considered
measured response values.
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3.3. Experimental Design and Measurements

In the present work, a mixed-level experimental design was proposed with two types
of material, four levels of infill percentage, and four levels of wind speed, as shown in
Table 3. Taguchi’s experimental design, which was based on the L16 orthogonal array, was
selected for various combinations of parameters. The combinations of various parameters
for different runs are shown in Table 6.

Table 6. L16 Taguchi orthogonal array experimental values.

E. No. IF (%) WS (m/s) MT DN (mm) SS (Pa)

1 10 2 1 0.004901 2.70 × 105

2 10 6 1 0.044109 2.43 × 106

3 10 10 2 0.092523 6.69 × 106

4 10 14 2 0.18135 1.31 × 107

5 40 2 1 0.002972 2.65 × 105

6 40 6 1 0.026753 2.39 × 106

7 40 10 2 0.053203 6.55 × 106

8 40 14 2 0.104280 1.28 × 107

9 70 2 2 0.000976 2.52 × 105

10 70 6 2 0.008785 2.26 × 106

11 70 10 1 0.041315 6.46 × 106

12 70 14 1 0.080978 1.27 × 107

13 100 2 2 0.000431 2.82 × 105

14 100 6 2 0.003722 2.09 × 106

15 100 10 1 0.020989 6.15 × 106

16 100 14 1 0.041138 1.20 × 107

3.4. Multiple Linear Regression Models (MLRM)

To optimize the process parameters, it is necessary to establish MLRM equations for
the experimental data. Minitab 19 software was used to develop the MLRM equations
for the response values. The full quadratic model was selected to develop the MLRM
equations. Equations (2) and (3) represent the full quadratic models for MLRM equations
for both the deformation and stress values. The p-value of the model and the linear, square,
and two-way interactions presented in Table 7 are all less than 0.05, indicating the statistical
significance of the parameters on the response values. It is understood that R2 values
greater than 95% for the MLRM equations in the responses presented in Table 8 indicate
the accuracy of the model established for optimization. It is understood from Figure 5a,c
that except for the material type and the interaction between the infill percentage and
material type, all other factors and their interactions play a role in blade deformation.
Similarly, in Figure 5b,d, the interactions between the material type and infill percentage
and the material type and the wind velocity do not influence the stress exerted on the blade.
Figure 5e,f indicate that the response values obtained from the experiments were normally
distributed. Hence, the experiments were validated.

SS = 164, 817 + 6730 IF + 49, 656 WS− 507, 426 MT− 78.3 IF2 + 63, 027 WS2 − 1508 IF ∗WS + 5106 IF ∗MT
+38, 326 WS ∗MT

(2)

DN = −0.002 + 0.000584 IF− 0.00083 WS− 0.0069 MT + 0.000008 IF2 + 0.000608 WS2 − 0.000177 IF
∗WS− 0.000478 IF ∗MT + 0.00582 WS ∗MT

(3)
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Table 7. ANOVA for response values.

Source DF
DN SS

Adj SS Adj MS F-Value p-Value Adj SS Adj MS F-Value p-Value

Model 8 0.067044 0.008380 94.08 0.000 3.49954 × 1014 4.37443 × 1013 4810.47 0.000
Linear 3 0.010788 0.003596 40.37 0.000 1.23113 × 1014 4.10378 × 1013 4512.84 0.000

IF 1 0.003344 0.003344 37.54 0.000 2.55568 × 1011 2.55568 × 1011 28.10 0.001
WS 1 0.007189 0.007189 80.70 0.000 1.22849 × 1014 1.22849 × 1014 13,509.42 0.000
MT 1 0.000256 0.000256 2.87 0.134 9,225,602,500 9,225,602,500 1.01 0.347

Square 2 0.002254 0.001127 12.65 0.005 1.63505 × 1013 8.17526 × 1012 899.02 0.000
IF ∗ IF 1 0.000738 0.000738 8.29 0.024 79383062500 79383062500 8.73 0.021

WS ∗WS 1 0.001516 0.001516 17.02 0.004 1.62711 × 1013 1.62711 × 1013 1789.31 0.000
2-Way Interaction 3 0.005404 0.001801 20.22 0.001 3.79126 × 1011 1.26375 × 1011 13.90 0.002

IF ∗WS 1 0.004058 0.004058 45.56 0.000 2.94578 × 1011 2.94578 × 1011 32.39 0.001
IF ∗MT 1 0.000370 0.000370 4.16 0.081 42,243,368,056 42,243,368,056 4.65 0.068

WS ∗MT 1 0.000976 0.000976 10.95 0.013 42,304,668,056 42,304,668,056 4.65 0.068
Error 7 0.000624 0.000089 63,654,826,389 9,093,546,627
Total 15 0.067667 3.50018 × 1014

Table 8. R-squared values of responses SS and DN.

Response R-sq R-sq (Adj) R-sq (Pred)

SS 99.08% 98.03% 93.23%
DN 99.98% 99.96% 99.87%

3.5. Optimization of Process Parameters

In this work, the process parameters were optimized using two different optimization
techniques, namely the particle swarm optimization (PSO) and moth-flame optimization
(MFO) algorithms. The normalization method expressed in Equations (4) and (5) was
used to convert the DN and SS response values into between zero and one, which are
on different scales. In this work, it was projected that the weights for DN and SS during
normalization were taken as 25% and 75%, respectively. Equation (6) represents the
objective function (NV).

n(DNi) =
DNi −minrn

i=1(DNi)

maxrn
i=1(DNi)−minrn

i=1(DNi)
(4)

n(SSi) =
SSi −minrn

i=1(SSi)

maxrn
i=1(SSi)−minrn

i=1(SSi)
(5)

NVi = 0.25 ∗ n(DNi) + 0.75 ∗ n(SSi) (6)

3.6. Optimization Algorithms

In this work, the MFO algorithm was implemented to optimize the parameters while
simultaneously minimizing both the deformation and stress developed on the blade. The
pseudocode of the MFO algorithm is presented below, under Algorithm 1. The MFO
parameters used in this paper are tabulated in Table 9. Due to the following advantages,
the MFO algorithm was selected when compared to other recently developed algorithms:

• It provides very quick convergence at a very initial stage by switching from exploration
to exploitation, which leads to an increase in the efficiency of the MFO for applications
such as classifications when a quick solution is needed;

• The exploitation characteristics of the moths further reduce the flame number as a
function of the iteration count;

• Simplicity, speed in searching, and simple hybridization with other algorithms.
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Algorithm 1: Moth-Flame Optimization (MFO)

Initialize the parameters for Moth-flame
Initialize Moth position Mi randomly
For each i = 1:n do
Calculate the fitness function fi
End For
While (iteration ≤ nitr) do

Update the position of Mi
Calculate the no. of flames
Evaluate the fitness function fi

If (iteration == 1) then
F = sort (M)

OF = sort (OM)

Else
F = sort (Mt − 1, Mt)
OF = sort (Mt − 1, Mt)

End if
For each i = 1:n do
For each j = 1:d do

Update the values of r and t
Calculate the value of D w.r.t. corresponding Moth
Update M(i,j) w.r.t. corresponding Moth

End For
End For
End While
Print the best solution
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Table 9. Parameters and their values used in PSO and MFO algorithms.

PSO Algorithm MFO Algorithm
Parameter Value Parameter Value

Learning factors
(C1 & C2) 2 & 2 Position of moth

close to the flame (t) −1 to −2

Inertia weight (ω) 0.6 Update mechanism Logarithmic spiral
Particle size (N) 30 No. of moths (N) 30

The PSO algorithm was also used to test the performance of the MFO algorithm,
and its parameters are listed in Table 9. The pseudocode of the PSO algorithm is given
above, under Algorithm 2. The efficiency of the MFO was proven by comparing the results
obtained using the PSO algorithm.

Algorithm 2: Particle Swarm Optimization (PSO)

P = Particle Initialization ();
For i = 1 to nitr

For each particle p in P do
fp = f(p);
If fp is better than f(pBest);

pBest = p;
end

end
gBest = best p in P
For each particle p in P do

v = v + c1 ∗ rand ∗ (pBest − p) + C2 ∗ rand ∗ (gBest − p);
p = p + v;

end
end

4. Results and Discussions
4.1. Parameter’s Effect on Response Values

Figure 6 illustrates the surface plots of various parameters concerning the response
values of DN and SS. To construct the surface plots for demonstration purposes, the hold
values of material type, infill percentage, and wind speed were assumed to be 1.5, 55, and
8, respectively. It is understood from Figure 6a,b that the interaction effect between IF and
WS will increase both the deformation and stress on the blade while increasing the IF and
WS values in both the PLA and ABS materials. When the IF value in PLA exceeds 50%, the
deformation is less than that of ABS. In the ABS material, the stress value is high compared
to the PLA material, which has less than 50% of the IF value. These effects are shown in
Figure 6c,d. For speeds of less than 5 m/s WS, both deformation and stress are lower in the
PLA material compared to the ABS material. This is understood from Figure 6e,f.

4.2. Optimization of Response Values Using MFO and PSO

The optimized parameters for the simultaneous minimization of deformation and
stress were obtained by implementing the MFO algorithm. The coding of the MFO al-
gorithm was developed using MATLAB programming. For each run of the program, an
iteration number of 100 was assumed to be the stopping criteria. The Pareto optimal fronts
obtained in each run were converted from multiple objectives into a single objective, using
the normalization method [41]. The response values and their parameters corresponding to
the minimum objective value were considered the optimal response values and parameters.
The program had to be run 12 times, and the best of each run was recorded. Tables 10 and 11
represent the same for the MFO and PSO algorithms, respectively. The response values of
12 runs were again converted to a single objective using the same normalization technique,
and they are presented in Tables 10 and 11 for the MFO and PSO algorithms, respectively.
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Figure 6. Effect of parameters on response values. (a) Surface plot of DN—hold value of MT: 1.5;
(b) surface plot of SS—hold value of MT: 1.5; (c) surface plot of DN—hold value of WS: 8; (d) surface
plot of SS—hold value of WS: 8; (e) surface plot of DN—hold value of IF: 155; (f) surface plot of
SS—hold value of IF: 55.

Figure 7 illustrates the convergence plot of the response values DN and SS. It is inferred
from the figure that both DN and SS values are converged in a smaller number of iterations
in the MFO algorithm than the PSO algorithm. Quick convergence by changing exploration
to exploitation in the initial stage of the MFO produced optimal results in the minimum
number of iterations. Apart from the convergence, the smaller number of parameters,
simplicity, flexibility, scalability, speed in searching, and the lack of derivation information
required in the initial phase were some of the other valid points that increased the efficiency
of the MFO algorithm compared to the PSO algorithm.
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Table 10. Optimum parameters and their responses with normalized values for 12 runs using the
MFO algorithm.

R.No. IF WS MT DN SS n (DN) n (SS) NV

1 79.77 2.015 2 0.000907 272,262 0.22482 0.07055 0.10912
2 51.67 3.854 2 0.000102 945,789 0.35912 0.07055 0.14269
3 18.09 2.021 1 0.002426 228,835 0.64926 0.01062 0.17028
4 21.13 2.030 1 0.002269 244,637 0.60532 0.03243 0.17565
5 81.01 2.749 2 0.000111 469,993 0.00255 0.34341 0.25820
6 82.59 2.865 2 0.000389 505,187 0.08018 0.39198 0.31403
7 12.09 2.085 1 0.003682 221,139 1.00000 0.00000 0.25000
8 30.94 2.991 2 0.000105 520,275 0.00070 0.41280 0.30978
9 17.17 2.533 2 0.000849 285,557 0.20850 0.08889 0.11880

10 82.34 3.009 2 0.000119 555,351 0.00466 0.46120 0.34707
11 80.20 2.579 2 0.000114 418,488 0.00332 0.27234 0.20508
12 79.98 2.169 2 0.000700 306,622 0.16713 0.11796 0.13025

Table 11. Optimum parameters and their responses with normalized values for 12 runs using the
PSO algorithm.

R.No. IF WS MT DN SS n (DN) n (SS) NV

1 80.15 2.089 2 0.000908 287,092 0.20025 0.13281 0.14967
2 81.35 2.527 2 0.000547 401,606 0.10914 0.37429 0.30800
3 81.84 2.165 2 0.001388 304,010 0.32136 0.16848 0.20670
4 81.58 2.034 2 0.001566 273,285 0.36627 0.10369 0.16934
5 80.29 2.436 2 0.000357 376,872 0.06094 0.32213 0.25684
6 23.76 2.716 2 0.000204 384,499 0.02233 0.33822 0.25924
7 84.44 3.402 2 0.000115 698,321 0.00000 1.00000 0.75000
8 80.27 2.190 2 0.000767 311,655 0.16457 0.18460 0.17960
9 82.34 3.009 2 0.000119 555,351 0.00089 0.69851 0.52410

10 11.03 2.110 1 0.004075 224,114 1.00000 0.00000 0.25000
11 80.72 2.152 2 0.000998 301,756 0.22294 0.16373 0.17853
12 81.92 2.886 2 0.000175 513,682 0.01503 0.61063 0.46173
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4.3. Statistical Analysis of Optimization Results

In this study, both the PSO and MFO algorithms coded in MATLAB were executed
12 times, i.e., 12 runs. In each run, 100 iterations were taken as the stopping criterion.
Since both the responses considered in this study were of a minimization nature, the dual
objective values were converted into a single objective using the normalization method.
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The statistical analysis of these values is presented in Figure 8. Minitab software, version
19, was used to establish probability, scatter, normal probability, and distribution plots.
The probability values in the MFO and PSO algorithms shown in Figure 8a,b are greater
than 0.005, and there is no pattern followed in Figure 8c,d. These results indicate that the
output values obtained from the algorithms are from the population of normal distribution.
Moreover, in Figure 8e,f, the mean, median, and standard deviation values for both algo-
rithms fall under the 95% confidence interval, and the p values are above 0.005, indicating
that the results obtained by using the algorithms are normally distributed. Therefore, the
parameters and their corresponding responses are acceptable.
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The significant difference between the results obtained using the PSO and MFO
algorithms was confirmed with paired t-test results of descriptive statistics, an estimation
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of paired difference, and the test values shown in Tables 12–14, respectively. It was assumed
that there was no difference in mean value (the null hypothesis). This test was run using
Minitab 19 software, and the results are shown in Figure 9. The p-value shown in Figure 9
from the paired t-test is 0.05, rejecting the null hypothesis. This ensures that the results
obtained using the PSO and MFO algorithms are significantly different.

Table 12. Descriptive statistics of paired t-test and CI: MFO; PSO.

Sample N Mean StDev SE Mean

MFO 12 0.2109 0.0829 0.0239
PSO 12 0.3078 0.1814 0.0524

Table 13. Estimation for paired difference.

Mean StDev SE Mean 95% CI for µ_Difference

−0.0969 0.1481 0.0427 (−0.1910, −0.0028)

Table 14. Hypothesis and test value.

Hypothesis Meaning T-Value p-Value
Null hypothesis H0: µ_difference = 0

−2.27 0.045
Alternative hypothesis H1: µ_difference 6= 0
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4.4. Non-Parametric Test for Statistical Comparison of Algorithms

To compare the efficiency of the proposed MFO algorithm with the PSO algorithm,
a statistical comparison was carried out using the non-parametric Friedman test, imple-
mented by [42–44].

Friedman Test

This test was carried out to find the significant difference between the algorithms’
results in a similar way to the testing of a two-way analysis of variance. In this test, equal
population medians are assumed to be a null hypothesis. This test was carried out using
the “friedman()” function available in the MATLAB 2021a software. The statistical table, as
the output of the function, is shown in Table 15. From the p-value of 0.0209 in Table 15, it is
understood that the null hypothesis is rejected, and the results are significant. The mean
rank values of the MFO and PSO algorithms were obtained at 1.1667 and 1.833, respectively,
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using the above MATLAB function. It is understood that the MFO algorithm, which had a
low mean rank value, was the best option compared to the PSO algorithm, proving that the
MFO algorithm outperformed the PSO algorithm.

Table 15. Friedman test results.

Source Sum Square Degrees of Freedom Mean Square Chi Square Value Probability > Chi
Square Value

Columns 2.66667 1 2.66667 5.33 0.0209
Error 3.33333 11 0.30303
Total 6 23

The optimal values of MT, IF, and WS for simultaneously minimizing the DN and SS
values were evaluated using the above-mentioned algorithms, and the results are presented
in Table 16. The results show that the MFO algorithm outperformed the PSO algorithm.

Table 16. Optimum parameters for MFO and PSO algorithms.

Algorithm IF WS MT DN SS n (DN) n (SS) NV

MFO 79.77 2.015 2 0.000907 272,262 0 0 0
PSO 80.15 2.089 2 0.000908 287,092 1 1 1

4.5. Confirmation of Experiment Results

A confirmation experiment was carried out for the parameter settings of IF and WS
at 79.77% and 2.015 m/s, respectively, for the PLA material. The experimental values
of DN and SS are listed in Table 17, which are 3.06% and 0.68% less than the predicted
values, respectively. This demonstrates that the optimum parameter and response values
obtained using the MFO algorithms are acceptable. To support this, simulation results are
also reported in Figure 10.

Table 17. Comparison of response values between predicted and experimental values.

Parameters Setting at
IF = 79.77%, WS = 2.015 and MT = PLA DN SS

Predicted value 0.000907 272,262
Experimental value 0.000879 273,920
Error % 3.06 −0.68
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4.6. Fabrication and Testing

The fused deposition modeling (FDM) method of additive manufacturing technology
was used for blade fabrication. It is closest to “bottom-up’ manufacturing in which a
structure can be built according to a complicated design shape using a “layer-by-layer”
approach rather than casting or forming, such as inflating or machining [45]. FDM is
based on the fact that the thermoplastic materials in the fiber are melted and bonded to the
previous layer by melting the formed layer. It is based on prefabricating a contemporary
layer on the top layer by melting the thermoplastic material in the fiber [46].

Using CREO software, a 100 W 3D CAD model of the micro wind blade with dimen-
sions of 0.415 m blade radius, 0.0802 m root chord length, and 0.0280 m root tip length was
created. The modeled geometry was converted into an STL file by considering the optimal
infill percentage of 79.77, obtained from the MFO algorithm, which was processed further
using the flash print software “Slicer” [47] to fabricate the blade using the 3D printing
fusion deposition method. The blade was then taken to be tested in the wind tunnel. The
FDM 3D printer used a PLA filament with a thickness of 1.75 mm. The 3D printer’s extruder
supplied the PLA material at 220 ◦C and formed the geometry of the blade layer by layer
with a thickness of 0.1 to 0.4 mm. The total numbers of layers was 802, and time taken to
complete the fabrication of blade was 95 min.

The output voltage, current, and speed of the rotor were considered measuring pa-
rameters for assessing the power developed by the turbine.

The cross-section diameter of the wind tunnel nozzle was 113 cm, and its center was
87 cm above the ground. The capacity of the fan motor was 5.5 hp with three-phase AC,
and its rotational speed was 1440 rpm. The wind turbine blades were attached to the hub
with a permanent magnet generator, and this rotor–hub assembly was kept in front of the
nozzle (Figure 11).
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To measure the wind speed, a digital anemometer with a resolution of 0.1 m/s and an
accuracy of 2% + 0.1 m/s, the Lutron AM-4201 model (0.4–30 m/s), was used. A Lutron
DT2234C tachometer, a non-contact laser type, was used to measure the wind turbine
speed. A DT830D LCD display digital multimeter was connected to the load to measure
the voltage and current. Two Wibro Garnet base B22-50w led bulbs were considered a load
on the wind turbine.

The 100 W, five-blade micro wind turbine model with an SD7080 airfoil was tested
at different wind speeds. The wind velocity controller controlled the velocity inside the
wind tunnel. Due to an aeroelastic phenomenon, when the wind speed was raised beyond
13 m/s, the vibration was sensed during the experiment. Therefore, the wind turbine was
not evaluated for speeds greater than 12 m/s. The power output of the wind turbine at
various wind speeds was observed, and wat is found that at 12 m/s of wind velocity, the
turbine produced 100 W of power output.
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5. Conclusions

A new, efficient airfoil blade made using PLA and ABS materials was designed to
work in low-wind-speed applications for a micro horizontal axis wind turbine. The micro
wind turbine blade was modeled using CREO software, and a finite element analysis was
performed using ANSYS software. Taguchi’s L16 orthogonal array experimental design
was considered for conducting experiments under various parameter combinations. The
finite element results for the deformation and stress were considered response values, and
corresponding MLRM equations were established. The MFO algorithm was implemented
to obtain the optimal parameters and compare their effectiveness with the PSO algorithm.
A statistical analysis confirmed that the results obtained by the algorithms were from the
normal distribution. A paired t-test and a non-parametric Friedman test proved that the
results from the MFO algorithm outperformed the PSO algorithm. The finite element
analysis was carried out on the blade as a confirmation experiment for the PLA material
with a 79.77% IF value under a wind speed of 2.015 m/s; these values were obtained from
the MFO algorithm as the optimum parameters. A deviation of less than 3% was recorded
between the predicted and experimental response values. Using FDM, the turbine blades
were also fabricated using the PLA material with 79.77% infill. The micro wind turbine was
tested in the wind tunnel and achieved a power output of 97 W.
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