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Abstract: The attainment of intricate part profiles for composite laminates for end-use applications is
one of the tedious tasks carried out through conventional machining processes. Therefore, the present
work emphasized hybrid intelligent modeling and multi-response optimization of abrasive waterjet
cutting (AW]C) of a novel fiber intermetallic laminate (FIL) fabricated through carbon/aramid fiber,
reinforced with varying wt% of reduced graphene oxide (r-GO) filled epoxy resin and Nitinol shape
memory alloy as the skin material. The AW]JC experiments were performed by varying the wt%
of r-GO (0, 1, and 2%), traverse speed (400, 500, and 600 mm/min), waterjet pressure (200, 250,
and 300 MPa), and stand-off distance (2, 3, and 4 mm) as the input parameters, whereas kerf taper
(Kt) and surface roughness (Ra) were considered as the quality responses. A hybrid approach of a
parametric optimized adaptive neuro-fuzzy inference system (ANFIS) was adopted through three
different metaheuristic algorithms such as particle swarm optimization, moth flame optimization,
and dragonfly optimization. The prediction efficiency of the ANFIS network has been found to
be significantly improved through the moth flame optimization algorithms in terms of minimized
prediction errors, such as mean absolute percentage error and root mean square error. Further, multi-
response optimization has been performed for optimized ANFIS response models through the salp
swarm optimization (SSO) algorithm to identify the optimal AW]JC parameters. The optimal set of
parameters, such as 1.004 wt% of r-GO, 600 mm /min of traverse speed, 214 MPa of waterjet pressure,
and 4 mm of stand-off distance, were obtained for improved quality characteristics. Moreover, the
confirmation experiment results show that an average prediction error of 3.38% for Kt and 3.77% for
Ra, respectively, were obtained for SSO, which demonstrates the prediction capability of the proposed
optimization algorithm.

Keywords: abrasive waterjet cutting; fiber intermetallic laminates; intelligent modeling; optimization;
ANFIS; salp swarm optimization

1. Introduction

In recent times, composite materials are found to be an excellent alternative for structural,
mechanical, and automotive applications instead of commercial materials such as metals and
plastics because of the versatility in their properties, such as relative stiffness, high-strength-
to-weight ratio, durability, rust, and corrosive resistance [1,2]. Fiber metallic laminates (FMLs)
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are a type of composite material that are created by fusing thin metal sheets as the skin
material with fiber-reinforced composite materials, which provides a combined benefit of both
metal and fiber composites [3,4]. Despite the potential advantages, producing near-net-shape
end-use FMLs is still laborious because the manufacturing capabilities are infeasible and
require the use of secondary manufacturing techniques such as cutting, drilling, milling, etc.,
to produce the necessary components for structural assembly [5].

The FMLs are layered composite materials, therefore, conventional machining of
these materials is extremely difficult due to anisotropic and non-homogeneous structure,
which leads to uneven thermal distribution, delamination in the matrix, rapid tool wear,
etc. [6]. Therefore, in order to prevent damage to the surface and subsurface conditions of
FMLs, unconventional machining processes, especially abrasive waterjet cutting (AW]C),
are now preferred for processing these types of materials. AW]JC is a mechanical energy-
based manufacturing technique in which the material removal is performed by means
of erosion due to the high pressurized abrasive slurry mixed waterjet impinged from a
high-precision micro focusing tube at high velocity. Due to the absence of thermal effect
and rapid cutting nature, AW]JC is mostly preferred for processing a variety of materials
including metals, ceramics and composites to achieve complex cutting geometries for
stringent design requirements [7]. Despite the potential advantages, the non-linear and
complex cutting mechanisms make it difficult to achieve attractive cutting features in AW]JC
parts, such as optimizing substrate material removal, fine-tuning kerf characteristics, and
enhancing surface quality. It is caused by the presence of numerous process-related control
factors, including water, abrasives, cutting, mixing, and acceleration parameters. Therefore,
accurate mapping between output response characteristics and input process variables is
essential for better comprehension, parametric analysis, process simulation, and machining
process optimization.

Recently, numerous researchers have experimentally investigated the AW]C process in
order to improve the quality of the processed components, especially for layered composite
materials. Using the Taguchi methodology, Kalirasu et al. [8] investigated the effects of
significant AWJC parameters on the kerf taper and surface roughness of a glass/coconut
fiber-based hybrid composite. The investigation’s findings indicate that the factor most
strongly impacting the chosen response characteristics is abrasive particle size. An ex-
perimental investigation was conducted by Hutyrova et al. [9] to investigate the surface
topography of AWJ-machined wood plastic composites. According to their findings, AW]JC
can be utilized to effectively machine plastic composites without melting the matrix materi-
als. For the assessment of the AW]JC performance of jute/polyester composites, Kalirasu
et al. [10] used an analytical method called response surface methodology and multi-
objective optimization on the basis of ratio analysis (RSM-MOORA). They investigated
how stand-off distance, cutting speed, and jet pressure affected the kerf taper and surface
roughness of machined surfaces. The findings show that the proposed method can be used
effectively for fiber-reinforced composites up to a maximum thickness of 3 mm. Using the
response surface approach, K. Balamurugan et al. [11] investigated the AW]JC characteristics
of a composite made of lanthanum phosphate and yttria. They considered the impact of
kerf taper, surface quality, and material removal rate as well as cutting speed, stand-off
distance, and water pressure as input factors. Their findings showed that cutting speed has
a negative impact on surface quality whereas water pressure has a positive impact on kerf
taper and material removal rate. To examine the surface and kerf characteristics of AW]JC
of stacked Ti and carbon fibre reinforced plastics (CFRP) FMLs, Pahuja et al. [12] carried
out experimental and statistical analyses. They asserted that the top skin is where micro
buckling and fracture start to cause the erosion mechanism of FMLs. Additionally, the
designs of the metal skin and polymer composite have a big impact on the FML interface
failures. The effect of AW]JC factors on the kerf quality of machined Ti/CFRP composite
stacks has been analytically investigated by Ramulu [13]. They created an empirical model
to anticipate the depth of penetration and material removal mechanism caused by waterjet
pressure, and they discovered that the model can be successfully utilized to control AW]JC
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parameters to produce cutting zones with no defects. On the qualitative traits of Ti/CFRP
stacked composite laminates, a drilling operation through AW] machining was carried out
by Alberdi et al. [14]. Their findings showed that the layout of stacks, water pressure, and
traverse speed of the focusing tube have a significant impact on the taper of drilling and
surface quality.

Recently, few researchers have utilized intelligent modeling such as fuzzy logic, arti-
ficial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and meta-
heuristic optimization algorithms to obtain the optimal cutting conditions of the AW]JC
process [15-19]. However, none of the researchers have hybridized the metaheuristic algo-
rithms to optimize ANFIS parameters to correlate the relationship between the input and
response characteristics of the AW]JC process, especially for fiber metallic laminates made of
nickel titanium superalloy (Nitinol) as the skin material. A titanium dioxide-based protec-
tive surface layer protects nitinol from corrosion. Nitinol’s biocompatibility and corrosion
resistance are excellent when properly processed, and it provides the flexibility and strength
required for many applications. When Nitinol is combined with carbon/aramid-based
epoxy prepregs, it results in excellent structural stability with high impact strength.

The emphasis of the current work is on the AW]JC of a novel fiber intermetallic laminate
(FIL) made of sheets of Nitinol shape memory alloy and reduced graphene oxide (r-GO)
filled epoxy prepregs embedded with carbon and aramid fibers, which are alternately
interlaced. Among the available fabrication techniques, the vacuum resin infusion process
has been utilized for fabricating the FILs due to their significant advantages such as
high consistency, repeatability, minimized styrene emissions and a cleaner process than
traditional FRP processing. The kerf taper and surface roughness were considered as
independent response characteristics for the investigation. The AWJC experiments were
carried out by varying processing parameters such as traverse speed, waterjet pressure,
and stand-off distance as the independent variables with the different wt% of r-GO fillers in
the FILs. Hybrid intelligent modeling of a parametric tuned ANFIS through metaheuristic
algorithms was performed for correlating the relationship between the input parameters
and output responses. Finally, the optimized ANFIS network was optimized through the
salp swarm optimization (SSO) algorithm for obtaining optimal AW]C parameters.

2. Methodologies

The proposed work aims to adopt a hybrid approach of metaheuristic algorithm tuned
ANFIS intelligent modeling of AW]JC parameters and multi-response optimization through
the salp swarm optimization algorithm. The flowchart shown in Figure 1 indicates the
proposed methodology to achieve the modeling and optimization of the AW]JC process.
In the first phase, the ANFIS prediction model was proposed in order to correlate the
AW]JC parameters and output responses. The ANFIS model parameters were further
optimized through metaheuristic algorithms such as particle swarm optimization (PSO),
moth flame optimization (MFO), and dragonfly optimization (DFO), and the best algorithm
was selected based on the obtained prediction errors such as root-mean-square error (RMSE)
and mean absolute percentage error (MAPE). In the second stage, the ANFIS model was
trained based on the optimal parameters and the prediction performance was evaluated
with the actual response values. In the final stage, the optimized ANFIS network was
considered as the objective function for multi-response optimization and the salp swarm
optimization algorithm was conceived for obtaining the optimal AW]JC parameters. The
proposed methodologies such as response surface methodology (RSM), ANFIS, and the
5SSO algorithm were discussed in subsequent sections.
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Figure 1. The flowchart of proposed modeling and optimization methodology.

2.1. Response Surface Methodology

In order to develop empirical models without sacrificing their prediction ability,
advanced manufacturing processes are adopting novel designs of experimental approaches
to reduce the number of experimental trials. Since the AW]JC process involves several
uncertain processing conditions that significantly influence the quality features of the
processed components, a competent experiment design approach, namely the Box-Behnken
design (BBD) of response surface methodology, has been used for designing the viable
number of experiments. In this present study, four parameters such as the addition of r-GO,
traverse speed, waterjet pressure, and stand-off distance of each of the three levels have
been considered for conducting the experiments with five replications for predicting the
output responses such as kerf taper and surface roughness. The second order empirical
models can be developed through the proposed BBD approach, which has been expressed
as follows (Equation (1)):

k k
R=Cy+ Z Cl-xl-—l—zzcijxixj + Z Cl-l-xl-z—i-w 1
i=1 T i=1

where w signifies statistical distribution error, C;, Cij, and C;; indicates the linear, interaction,
and quadratic coefficients of the parameters, respectively, R indicates the response value
and k indicates the number of dependent variables.

2.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS is a hybrid machine learning intelligence model, which comprises the advantages
of both fuzzy logic and neural network for precise mapping of the correlation that exists
between the input and output parameters of complex real-world problems [20]. In ANFIS,
the Takagi-Sugeno fuzzy inference system has been optimized by the highly interconnected
neural network models, which enables the network to be more reliable for predicting the
relationship between uncertain variables associated with any system. The general ANFIS
network architecture consists of five major steps, as follows: input fuzzification, implication,
normalization, defuzzification, and output layers. The detailed step-by-step explanation of
how the ANFIS network has been effectively utilized for intelligent modeling of the advanced
manufacturing process is explained by the previous works [21,22].
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2.3. Salp Swarm Optimization (SSO) Algorithm

Salp swarm optimization (SSO) is a novel swarm-based metaheuristic algorithm that
mimics the navigating and foraging mechanism of salps in the oceans [23]. In the SSO
algorithm, both leader and follower salps form the salp chain. The salp at the top of the salp
chain is the leader, and the other salps are regarded as the followers. Half of the salps are
chosen as leaders in order to increase the population diversity of the algorithm and the capacity
to exit the local optima. The implementation flowchart of the proposed SSO algorithm for
solving this engineering problem has been depicted in Figure 2. The step-by-step procedure
of the SSO algorithm for obtaining optimal AW]C parameters is as follows:

Step 1: Initialization of salp population

A set of parameters (Pl- ) such as wt% of r-GO, TS, WP, and SOD are generated within
lower bound and upper bound values as per their selected levels using the following
relation (Equation (2)).

P;j = Ib; + rand  (ub; — Ib;) )

where [b; and ub; are the lower and upper bound value of ji" parameter, and a rand-random
value between 0 and 1.
Step 2: Evaluation of fitness of each Salp

The fitness values of each salp, i.e., responses such as Kt and Ra, are calculated using
the optimized ANFIS Model. The non-dominated salps, based on their dual objectives, are
computed and the best salp, based on the crowding distance, is assumed as food source
(Flj) and stored in a file. The archive size is updated within its maximum: size.

Step 3: Update the leader position and the other salps’ position

The value of the squared exponential covariance variable (C1), which defined the
position of the leader salp, is calculated using the following relation (Equation (3)).

4it 2

c] = 2e ( max_if ) (3)

where it is the current iteration number and max_it is the maximum iteration number or
stopping criteria. The leader salp’s position is updated through the following relation
(Equations (4) and (5)).

if c3 < 0.5Py; = Fyj+ o1 [(ubj — Ibj)cy + Ib)] @)

Else
Plj = Flj - [(Mbj — lbj)Cz + lb]'] 5)

End
where ¢; and ¢3 are random values between 0 and 1, [b; and ub; are the lower and upper
bound value of j* parameter, and F, j is the position of food source. Further, the position of
follower salps is described as follows (Equation (6)):

Py = %(Plj + P(i—l)j) (6)

Finally, the updated position of salps is verified, whether they are within their bounds,
ie., ij and ubj.

Step 4: The initial position of salps is updated with the new updated position using the
entire replacement strategy.

Step 5: Starting from step 2 to step 4, these steps are repeated until the stopping criteria.

Step 6: The dual objective solutions from the archive are converted into single objective
solutions by implementing Deng’s method. The order preference of the solution is
made based on how high the value is in the overall performance index.



Materials 2022, 15, 7216

6 of 20

Step 7: The optimum process parameter (wt% of r-GO, TS, WP, and SOD) and its responses
(Kt and Ra) are displayed based on the higher overall performance index value.

Read lower limit (1] J) and upper limit (ulf J) of

v

Set itr=1

v

For each i=1 tons

Generate r-GO[ |, T5[ ], WP[ | and 50D[ ]

v

For each Salp i=1 tons
Using ANFIS models calculate < [
Kil Tand Ral 1

store in a file Display the best values from the file
Update the archive

Calculate C1 and Update Leader salp’s position|

For each Salp i=2 to ns

v
Compute Non-dominated salps

Compiite the best salp as the food source and|

if (itr==nitr)

itr=itr+1

Figure 2. Implementation flowchart for salp swarm optimization algorithm.

3. Experimental Procedure and Measurements

The FILs are fabricated through a vacuum assisted resin infusion process by utilizing
Nitinol shape memory alloy sheet as the skin material, bidirectional weaving patterned
carbon and aramid fibers as the prepreg fiber materials, and reduced graphene oxide
(r-GO), a derivative of graphene, which has been prepared through the modified hummer’s
method and has been supplemented as nano filler in the matrix material. The r-GO nano
filled epoxy matrix is supplied through a resin inlet port of the infusion process in order
to fabricate FILs with alternatively stacked woven carbon and aramid fibers with Nitinol
shape memory alloy foils (NiTi/[carbon/epoxy/aramid]8/NiTi) as a skin material. The
final thickness of fabricated FILs is upheld to approximately 3.5 mm.

The cutting experiments were performed on three different categories of FILs fabri-
cated with 0, 1, and 2 wt% of r-GO nano fillers through a high-precision cantilever type
computer numerical controlled AW]JC system (S3015, Waterjet Germany, Chennai, India).
The AW] machine is equipped with a high-pressurized intensifier pump of operating pres-
sure ranging up to 450 MPa and a carbide focusing tube of 0.76 mm diameter to achieve
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NiTi foils

efficient machining operations. The machining parameters, such as the abrasive flow rate
of 200g/min, the garnet abrasive particle size of ~177um (80 mesh), the orifice diameter
of 0.276 mm and the jet impact angle of 90°, are constantly maintained throughout the
experiments. As per the RSM-BBD experimental design strategy for four dependent vari-
ables with three levels such as r-GO addition of 0, 1, and 2 wt%, traverse speed of 400, 500,
and 600 mm/min, waterjet pressure of 200, 250, and 300 MPa, and stand-off distance of
2,3, and 4 mm, a total of 29 straight parallel slots were made in the different FILs with a
cutting length of 50 mm for the investigation of Kt and Ra. The range of AWJC parameters
was selected by performing extensive preliminary studies. The typical AW]C experimental
setup and processed FIL specimens is depicted in Figure 3. The AW]C system consists
of abundant process-related dependent variables, whereas the most significant variables
such as TS, WP, and SOD, suggested by previous researchers, were selected for the present
investigation. The kerf taper at jet entry and exit of the machined FILs were computed
using a METZ 1395 (Metzer Instruments, Mathura, India) tabletop microscope and the
surface quality at the kerf side surface was measured using a non-contact three-dimensional
profilometer (Talysurf CCI Lite, Taylor & Hobson, Leicester, UK). The computational errors
were minimized by measuring Kt and Ra thrice and their mean values was considered
as responses. The schematic representation of measuring Ra and Kt has been shown in
Figure 4. The response features obtained from the AW]JC of FILs are further considered for
statistical validation and optimization, as presented in Table 1.

Arrangement of fibres & Vacuum assisted resin

for FiLs

A
(A 2
r o

infusion process

Abrasive waterjet cutting
of FiLs

Figure 3. Development and AW] cutting of fiber intermetallic laminates.

FIL specimen Top
kerf -
Surface &
roughness yggs §.
Thickness _L[
of FIL AR
= \'\ Bottom
kerf

Figure 4. Schematic of measuring the quality characteristics such as Ra and Kt.
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Table 1. Design matrix and experimentally measured response values.

Processing Parameters Measured Responses
Exp. Trial r-GO Addition  Traverse Speed Waterjet Stand-off ¢ o Surface
(wt%) (mm/min) Pressure (MPa) Distance (mm) Kerf Taper (°) Roughness (um)

1 1 400 250 4 2.488 5.04
2 1 500 300 4 2.278 4.85
3 2 600 250 3 2221 5.01
4 0 500 200 3 1.988 4.69
5 1 600 250 4 2.187 5.12
6 2 500 250 4 2.191 4.98
7 1 500 250 3 2.099 4.67
8 1 500 250 3 2.132 4.74
9 1 400 250 2 2.563 5.24
10 1 600 200 3 1.966 5.03
11 2 500 250 2 2.43 473
12 1 400 200 3 2.458 5.18
13 2 400 250 3 2.385 4.57
14 2 500 300 3 2.109 4.66
15 1 500 300 2 2.362 5.16
16 0 400 250 3 2.474 4.83
17 0 500 250 2 2.298 5.13
18 2 500 200 3 2.253 4.65
19 1 500 250 3 2.094 4.68
20 1 400 300 3 2.366 4.81
21 0 500 250 4 2.387 4.4
22 1 500 250 3 2.077 4.71
23 1 500 250 3 2.103 4.75
24 0 600 250 3 2.203 4.72
25 1 500 200 2 2.275 528
26 1 500 200 4 2.143 5.06
27 1 600 300 3 2.32 5.23
28 0 500 300 3 2.452 45
29 1 600 250 2 2.376 5.53

4. Results and Discussion
4.1. Statistical Analysis of Developed Mathematical Models

The adequacy and statistical significance of the developed mathematical models and
performed experimental investigations were assessed through multi-analysis of variance
(ANOVA) and Anderson-Darling normality tests. The experimental work considered the
most significant AW]C parameters that influence the quality features of processed compo-
nents. Therefore, the influence of individual parameters on the selected responses should
be assessed through a systematic analysis for improving the cut quality characteristics. The
ANOVA results for selected response features such as Kt and Ra have been mentioned
in Tables 2 and 3. From the results, the coefficient of determination values for Kt and Ra
is achieved at 99.1% and 99.2%, respectively. Moreover, the insignificant terms at a 95%
confidence interval were eliminated from the regression modeling through the backward
elimination procedure. The lack-of-fit values were also found to be significant within the
selected range of processing parameters, which signifies the statistical significance of the
conducted experiments. In addition, the statistical analysis (Anderson-Darling normality
test) is performed to validate the obtained solutions at a 95% confidence level (Figure 5).
The results of statistical analysis also revealed that the obtained solutions are statistically
significant and are normally scattered against actual values, which confirms the accuracy
of conducted AW]C experiments.
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Table 2. Statistical analysis for Kt.

Source SS DOF MS F-Value Prob > F
Model 0.699 14 0.049 111.7 <0.0001
wt% of r-GO 0.003 1 0.003 8.4475 0.0115
Traverse 0.177 1 0.177 397.44 <0.0001
Speed
Waterjet 0.053 1 0.053 120.36 <0.0001
Pressure
Stand-off 0.03 1 0.03 73.901 <0.0001
Distance
Residual 0.006 14 0.006
Lack of Fit 0.004 10 0.004 1.1723 0.4765
Pure Error 0.001 4 0.0003
Cor Total 0.706 28
R? 0.991 Adj. R? 0.982 Ade. Prec. 37.59
Table 3. Statistical analysis for Ra.
Source SS DOF MS F-Value Prob > F
Model 2.022 14 0.144 130.1 <0.0001
wt% of r-GO 0.009 1 0.009 8.17 0.0126
Traverse 0.078 1 0.078 70.63 <0.0001
Speed
Waterjet 0.038 1 0.038 3471 <0.0001
Pressure
Stand-off 0.218 1 0.218 197.0 <0.0001
Distance
Residual 0.015 14 0.001
Lack of Fit 0.010 10 0.001 0.84 0.6255
Pure Error 0.005 4 0.001
Cor Total 2.038 28
R? 0.992 Adj. R? 0.9847 Ade. Prec. 46.14
Summary Report for Kt (b) Summary Report for Ra
And Darling Test Anderson-Darling Normality Test
A-Squared 0.30 A-Squared 0.53
P-Value 0.569 P-Value 0.161
Mean 2.2648 Mean 48948
S!l?ev 0.1588 StDev 0.2698
Variance 0.0252 Variance 00728
Skmgﬁ -0.049337 Skewness 0.336468
Kurtosis -0.911968 Kurtosis -0.486295
N 29 N 29
Minimum 1.9660 Minimum 4.4000
15t Quartile 21208 15t Quartile 46850
Median 227150 Median 48300
3rd Quartile 2.3860 3rd Quartile 51250
Maximum 2.5630 Maximum 5.5300
95% Confidence Interval for Mean 95% Confidence Interval for Mean
2.2044 23252 _L 8 s 47922 49975
95% Confidence Interval for Median 95% Confidence Interval for Median
_ 21797 236M _ 4783 50433
95% Confidence Interval for StDev 95% Confidence Interval for StDev
0.1260 0.2148 024 0.3649
95% Confidence Intervals 95% Confidence Intervals

Figure 5. Statistical validation of response characteristics: (a) Kt, and (b) Ra.

4.2. Intelligent Modeling of AWJC Quality Characteristics through Optimized ANFIS Network

Due to the uncertainty in non-traditional machining processes such as abrasive wa-
terjet machining, the correlation that exists between the input parameters and the output
characteristics is extremely non-linear. As a result, an efficient approach to modeling the
relationship between the parameters is critical in order to improve the predictability of such
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processes. The correlation between the AW]C parameters such as traverse speed, waterjet
pressure, and stand-off distance, as well as r-GO addition in FML on response features such
as Kt and Ra was established in this work using the ANFIS intelligent modeling approach.
To develop the proposed hybrid intelligent model, a customized code was written in the
MATLAB 2021b™ environment. The proposed work utilized a sugeno-type sub-clustering
“genfis2” ANFIS model for appropriate modeling of the inference system. Since the ANFIS
network parameters, such as premise and consequent variables, are generally selected
based on the choice of the user and/or a trial-and-error approach, this may lead to an inef-
ficient model with a quantum of prediction errors. Therefore, an efficient tuning approach
is necessitated to optimize these parameters to improve the prediction capability of the
ANFIS network.

In the present work, three well-established metaheuristic algorithms namely PSO,
MFO, and DFO have been efficiently utilized for tuning the ANFIS parameters in order
to improve the learning capability by minimizing the prediction error. In general, the
behavior of the subtractive clustering ANFIS model is influenced by the RADII, squelch
factor, accept ratio, and rejection ratio. The RADII clustering center, which ranges from
0 to 1, represents the influencing ranges of each dependent and predictor variable. In
several cases, it was discovered that a smaller cluster RADII is a better option for obtaining
better prediction results. Therefore, a minimum range of RADII values between 0.13 and
0.5 were considered in the current work. The neighborhood cluster center was calculated
by multiplying a chosen range of RADII values by the quash factor. Additionally, the
volume of data required for effective training and performance testing of the FIS model is
considered. The default values for the acceptance and rejection ratios are frequently 0.5
and 0.15, respectively. For each response, the RADII, squelch factor, number of training
sessions, and data verification are additional factors that must be taken into consideration
when building the best FIS model.

In the first step of ANFIS hybrid modeling, the control elements of the AW]JC process,
such as traverse speed, waterjet pressure, and stand-off distance with wt% of r-GO, are
specified as input factors, whereas Kt and Ra are thought of as output factors. Furthermore,
to increase the trained network’s accuracy while reducing prediction errors, FIS parameters
such as cluster radius, quash factor, and proportion of data used to train the network are
selected. Table 4 contains a list of the ANFIS variable levels considered for the network’s
initial training with selected metaheuristic algorithms. The fuzzy rules are designed
to cluster the chosen processing variables into a variety of values by combining two
or more membership functions. Extensive membership functions must be generated in
order to develop a rule-based correlation between the processing variables and response
characteristics because there are numerous process parameters. As a result, this research
utilizes the subtractive fuzzy clustering approach. Due to their smoothness and concise
notation when estimating the responses, Gaussian-shaped membership functions (MFs)
are preferred over a variety of other available membership functions (MFs). The key
contributing parameters for PSO, MFO, and DFO for optimizing the ANFIS parameters
have been mentioned in Tables 5 and 6. These parameters, which are the ideal training
parameters for the current investigation, were obtained through multiple iterations of the
trial-and-error method.

Table 4. FIS parameters used for the optimization.

Parameters Representation Values/Range

Four input parameters and a response (either
MRR or kerf taper or surface roughness)
Quash factor To multiply RADII values 2to3
% of data for training FIS
model

RADII — Cluster radius 0.13t0 0.5

Total number of experiments 65% to 80%
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Table 5. Parameters used in PSO and MFO algorithms for optimizing ANFIS parameters.

PSO Algorithm MFO Algorithm
Parameter Value Parameter Value
Learning factors (C1 & C2) 2&2 Position of moth close to the flame (t) —1to—2
Inertia weight (w) 0.6 Update mechanism Logarithmic spiral
Particle size (N) 30 No. of moths (N) 30
No. of iterations (nitr) 100 No. of iterations (nitr) 100

Table 6. Parameters of DFO algorithm for optimizing ANFIS parameters.

Parameters Value/Equation
No. of dragonflies (nd) 100
No. of iterations (nitr) 100
Inertia weight (W) (Wmax = 0.9 and wyy, = 0.2) W = Wiax — (Wmax — Wyin) A2
Separation weight sw=0.1— 0Llxitr
Alignment weight aw = 0.1 — 70'17”.*;;”
Cohesion weight cw=01— 0.1n i*tritr
Food factor ff =2 x rand
Enemy factor ef =0.1— O'lni*tritr
Achieve size 100

The proposed algorithms were executed several times for improving the prediction
capability of the ANFIS network by minimizing the MAPE and RMSE during the training
of the network. The algorithms were simultaneously executed for 100 iterations in order
to obtain the optimal ANFIS parameters. The convergence plots of DFO, MFO, and PSO
algorithms as shown in Figure 6a—d, which indicates the correlation between the number
of iterations and their consequences on the ANFIS outputs such as MAPE and RMSE
for the response features such as Kt and Ra. The convergence plots show that the MFO
algorithm has converged effectively and produced minimized MAPE and RMSE values
when compared with the other two optimization algorithms. In addition, the statistical
analysis results (normal distribution of data) have also proved that the MFO algorithm is
efficient in the training of the proposed ANFIS network parameters at a 95% confidence
interval, with an improved Anderson squared value of 0.72 for MAPE and 0.92 for RMSE,
respectively (Figures 7 and 8).

MAPE for Kt - MAPE for Ra
0.1 T T T . u T Y T ! J
b DFO
(b) MFO
0.6 PsSO|
0.5
E & 0.4 [
< <
= =
03r 1
0.2 1
0 L ) . ) . A L . L o 7 ; T T
0 10 20 30 40 50 60 70 80 9 100 0 10 20 30 40 50 60 70 80 90 100
No. of Iteration No. of Iteration

Figure 6. Cont.
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Figure 6. Convergence plots for: (a,b) MAPE, and (c,d) RMSE of Kt and Ra.
Summary Report for DFO_IN Summary Report for MFO_IN
Anderson-Darfing Normality Test Anderson-Darling Normality Test
A-Squared 0.46 A-Squared 072
P-Value 0.244 P-Value 0.053
Mean 53143 Mean 47.750
StDev 24.41 StDev 23.592
Variance 582.794 Variance 556.565
Skewness -0.14823 Skewness 0.545701
Kurtosis 115618 Kurtosis -0.855654
N 28 N 28
Minimum 7.000 Minimum 16.000
15t Quartile 27.750 1st Quartile 27.250
Median 55.000 Median .000
3rd Quartile 72.500 3rd Quartile 67.500
Maximum 90.000 Maximum 97.000
95% Confidence Interval for Mean 95% Confidence Interval for Mean
43782 62.504 38.602 56.898
95% Confidence Interval for Median 95% Confidence Interval for Median
T am  essz - aza soess
95% Confidence Interval for StDev. 95% Confidence Interval for StDev
19.086 32.859 18.652 2m
95% Confidence Intervals 95% Confidence Intervals
Mo I Mean ; - {
Mo | . Medion | i
“© o 30 5 L] L] » 30 s 40 as so 55 60

(a) (b)

Summary Report for PSO_IN

Anderson-Darling Normality Test
A-Squared 0.45
P-Value 0.250
Mean 52.071
StDev 26.290
Variance 691.180
Skewness -0.00664
Kurtosis 113403
N 28
Minimum 13.000
1st Quartile 30.250
Median 48.000
3rd Quartile 77.250
Maximum 100.000
95% Confidence Interval for Mean
41.877 62.266
95% Confidence Interval for Median
— oun | Joms
95% Confidence Interval for StDev
20786 35.785

95% Confidence Intervals

Figure 7. Statistical analysis for MAPE obtained from: (a) DFO, (b) MFO, and (c) PSO.
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Summary Report for DFO_IN Summary Report for MFO_IN

Anderson-Darling Normality Test Anderson-Darling Normality Test
A-Squared 040 A-squared 092
P-Valu 0333 P-Value oo

59.250

22.287

o0 2 EE——
95% Confidence Interval for StDev
17.621 30.336
95% Confidence Intervals 95% Confidence Intervals
— Mesn S —
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Summary Report for PSO_IN

Anderson-Darling Normality Test
A-Squared 032
P-Value 0.516
Mean 57.214
StDev 25.069
Variance 628.471
Skewness 0277879
Kurtosis -0.602197
N
Minimum 13.000
st Quartile 41.500

61

95% Confidence Interval for Mean
47.493 66.935
95% Confidence Interval for Median
o i— wass 0739
95% Confidence Interval for StDev
19.820 34923

Figure 8. Statistical analysis for RMSE obtained from: (a) DFO, (b) MFO, and (c) PSO.

The optimal ANFIS parameters and their corresponding error values obtained for
30 epochs through the proposed optimization algorithms have been illustrated in Table 7.
Among the available RMSE and MAPE values, MFO produced values are considered
minimal for both the responses such as Kt and Ra. The optimized results obtained through
MFO, 80% of the experimental data, i.e., 23 data, were considered for training the network,
whereas the remaining six experimental data were taken to evaluate the prediction ability
of the trained network. The objective of ANFIS intelligent modeling is to minimize the
error between the training and checking data for each response. From the table, the training
and checking errors obtained through the MFO algorithm for Kt is 0.0056% and 0.016%,
and for Ra is 0.0088% and 0.0231%, respectively. The prediction error between the actual
data and ANFIS predicted data has been graphically represented in Figure 9a,b. These
findings suggest that the error values between the training and checking data are found to
be minimal. As a result, this proposed trained ANFIS approach could be used to accurately
predict AWJC parameters with fewer prediction errors.

Table 7. Optimal ANFIS parameters.

RADII Value

. % Training Quash

R Algorithm T C
esponse gorithm % GO s WP SOD Ki/Ra Data Factor Error Error RMSE MAPE
DFO 0.241 0491 0.245 0441 0401 0.8 3 0.0056 0.0163 0.00897 0.16888
Kt (°) MFO 0.473 0.309 0.383 0.352 0.191 0.8 2.87 0.0056 0.0163 0.00895 0.16838
PSO 0.442 0.439 0377 0371 0.304 0.77 2.34 0.0056 0.0188 0.00991 0.20857
DFO 0.272 0320 0.316 0418 0.258 0.8 3 0.0088 0.0232 0.01317 0.10968
Ra (um) MFO 0.278 05 0435 0448 0.260 0.79 2.10 0.0088 0.0231 0.01315 0.10713
PSO 0.198 0.320 0.323 0.341 0.382 0.77 2.60 0.0088 0.0233 0.01323 0.11361
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Figure 9. ANFIS predicted response values vs. experimental measured values: (a) Kt, and (b) Ra.

4.3. Influence of Process Parameters on Quality Characteristics

The kinetic energy of the waterjet and its associated variables, as well as the thickness
of the substrate materials, have a significant impact on the cutting quality in the AW]JC
process. The primary cause of an irregular kerf taper ratio, which lowers the calibers of
machined components, is the energy depletion of the waterjet along the thickness of the
substrate. To achieve the desired cutting quality with minimized taper, appropriate AW]JC
variables must be chosen and their effects on kerf taper must be investigated. Moreover, to
determine how the machined components will interact with their adjacent components and
various working environments, it is crucial to investigate the surface quality of abrasive
waterjet machined materials, especially layered composites.

The influence of various AWJC parameters and the inclusion of r-GO with varying
weight percentages on the quality characteristics of processed FILs at varying cutting
conditions are described in the ANFIS surface plots (Figure 10a-d). The influence of
waterjet pressure (WP) and wt% of r-GO on Kt is represented in the 3D surface plot
(Figure 10a). The plot reveals that Kt linearly increases with an increase in WP from 200 bar
to 300 bar, whereas a slight variation in Kt has been found when the addition of r-GO has
been increased from 0 to 2 wt%. When the waterjet pressure is increased, the FILs may be
impinged upon by the kinetic energy and flow turbulence of the water-jet stream, creating a
wider slot. In addition, interparticle collision is increased by flow turbulence and water-jet
expansion, which widens the kerf surface’s taper [12,24]. The consequences of traverse
speed (TS) and stand-off distance (SOD) on Kt have been demonstrated in Figure 10b. The
plot shows that Kt is linearly widening with an increase in SOD from 2 mm to 4 mm and TS
from 400 mm/min to 600 mm/min. This might be because of a narrowing of the effective
waterjet caused by higher SOD, which causes the waterjet to flow away from the focusing
tube and contract into abrasive particles. As a result, the cutting and penetrating zones of
abrasive particles in a waterjet are reduced in energy. The kerf on the bottom cut surface
is consequently smaller than the kerf on the top cut surface. Kt was therefore found to be
greater at higher SOD levels [25].

The combinatory effects of the AW]JC process parameters on Ra have been represented
by the ANFIS three-dimensional plots (Figure 10c,d). The influence of waterjet pressure and
r-GO addition on surface quality has been presented in Figure 10c. It is perceived from the
plot that Ra has been increased linearly with an increase in waterjet pressure, whereas the
addition of r-GO nano fillers is found to be insignificant on surface quality. As the waterjet
pressure increases, the energy fluctuation of the waterjet also intensifies. The high-pressure
waterjet’s erosion of abrasive particles will make the cut surface more uneven, which results
in a rough-cut surface [26]. A three-dimensional surface plot (Figure 10d) shows the effect
of the stand-off distance and traverse speed on the Ra of processed FIL surfaces. As can be
seen from the plot, the Ra is significantly increasing, with an increase in both the processing
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variables from their low to high levels. When the stand-off distance rises, the waterjet
expands before impacting the substrate, exposing the substrate to more extrinsic drag from
the surrounding environment. As a result, the kinetic energy of the jet is reduced, causing
the jet diameter to expand, resulting in a rough-cut surface [25,27].
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Figure 10. Influence of process parameters on the response characteristics: (a,b) Influence on Kt, and
(c,d) Influence on Ra.

4.4. Multi-Response Optimization through Salp Swarm Algorithm

In this study, a hybrid approach of a parametric tuned ANFIS-salp swarm optimization
algorithm has been used for the modeling and optimization of AW]JC parameters during
the processing of novel fiber intermetallic laminates. Based on the results of the proposed
hybrid approaches, the following inferences were attained:

The present investigation aims to optimize the AW]C parameters in order to improve
the cut quality characteristics such as kerf taper and surface quality. In general, the
multi-response optimizations were performed in two ways: (i) the objective functions
were combined into single objectives by assigning weight for each function to minimize
the optimization complexity, and (ii) to obtain optimal results through pareto-optimal
solutions of the deciding parameters [28]. In this study, the optimization was performed
through a novel metaheuristic-based salp swarm optimization algorithm in order to obtain
the non-dominated optimal solutions. The trained ANFIS outputs for each response
have been considered as the objective functions for the multi-response optimization. The
5SSO algorithm was executed with the correlation of terms as indicated in Table 8. The
implementation of SSO is simple and only needs a few parameters. Therefore, the algorithm
was able to produce the best results possible with these minimal parameter settings.
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Table 8. Parameters of SSO algorithm.

Parameter Value
Cl-coefficient to control exploration and (it
exploitation 2¢" " nit
C2 and C3 Random value between 0 and 1
No. of salps (N) 30
No. of iterations (nitr) 100

The optimization was executed by using the SSO algorithm with the parameter settings
of 30 number of salps with a maximum of 100 iterations. During the optimization, the
parameters of SSO were self-tuned for obtaining global optimal solutions that satisfy the
goal of objective functions. The algorithms were executed twenty-nine times to attain
ingenious pareto-optimal settings. From each execution, a set of pareto-optimal solutions
were attained and the best one among the optimal front was selected through Deng’s
statistical approach [29]. The optimization performance of the SSO algorithm has been
shown in the sample pareto-optimal front (Figure 11). Among the obtained optimal
parameter settings through each run, the best one was attained by implementing the Deng’s
statistical ranking approach. The solutions were ranked based on the Deng’s value, as
mentioned in Table 9. From the table, a higher Deng’s value of 0.51507 was obtained
at execution number 15 (As highlighted in bold) and their corresponding parameters,
such as 1.004 wt% of r-GO, 600 mm/min of TS, 214 MPa of WP, and 4 mm of SOD, were
global optimal parameter settings that provide an improved response characteristic value
such as Kt of 2.067° and Ra of 3.18 um, respectively. In addition, a statistical analysis
(Anderson-Darling normality test) was performed to validate the obtained solutions at
a 95% confidence level (Figure 12). The results of statistical analysis revealed that the
obtained solutions are statistically significant and are normally scattered against actual
values, which confirms the efficacy of the proposed optimization algorithm.
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Figure 11. Sample pareto optimal front of SSO algorithm for optimized AW]JC parameters.
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Table 9. Optimal AWJC parameters and their corresponding response values for 29 runs.

Run No. r-GO (wt%) TS (mm/min) WP (MPa) SOD (mm) Kt (°) Ra (um) Deng'’s Value Rank
1 1.140 600.00 209.98 4.0000 2.002 3.233 0.51446 27
2 1.094 600.00 210.25 4.0000 2.007 3.222 0.51454 25
3 1.178 600.00 213.33 4.0000 2.021 3.202 0.51470 18
4 1.089 600.00 213.43 4.0000 2.034 3.183 0.51486 12
5 1.038 600.00 208.35 3.9989 1.999 3.282 0.51425 28
6 1.024 600.00 213.83 4.0000 2.057 3.180 0.51501 3
7 1.011 600.00 212.76 4.0000 2.046 3.184 0.51493 8
8 1.016 600.00 210.29 4.0000 2.018 3.219 0.51462 22
9 1.097 600.00 213.71 4.0000 2.035 3.183 0.51487 11
10 1.015 600.00 212.83 4.0000 2.046 3.183 0.51493 7
11 1.078 600.00 213.41 4.0000 2.037 3.182 0.51488 10
12 1.138 599.99 211.82 4.0000 2.014 3.199 0.51467 20
13 1.159 600.00 211.95 4.0000 2.014 3.203 0.51465 21
14 1.131 599.99 209.94 4.0000 2.003 3.233 0.51447 26
15 1.004 600.00 214.00 4.0000 2.067 3.180 0.51507 1
16 1.195 598.37 212.03 4.0000 2.011 3.224 0.51455 24
17 1.017 600.00 214.29 4.0000 2.066 3.180 0.51506 2
18 1.051 600.00 217.75 3.9139 2.053 3.285 0.51458 23
19 1.070 600.00 212.08 4.0000 2.025 3.190 0.51477 15

20 1.060 600.00 213.80 4.0000 2.045 3.181 0.51493 6
21 1.099 600.00 212.83 3.9998 2.027 3.186 0.51480 14
22 1.000 600.00 211.67 4.0000 2.036 3.194 0.51483 13
23 1.044 600.00 213.77 4.0000 2.049 3.181 0.51496 4
24 1.047 600.00 213.81 4.0000 2.049 3.181 0.51496 5
25 1.088 600.00 212.28 4.0000 2.024 3.189 0.51477 16
26 1.137 600.00 211.91 4.0000 2.015 3.198 0.51468 19
27 1.068 600.00 211.49 4.0000 2.020 3.198 0.51471 17
28 1.176 599.92 207.06 3.9997 1.985 3.351 0.51390 29
29 1.034 600.00 213.09 4.0000 2.044 3.182 0.51492 9
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Figure 12. Statistical validation of results obtained from 29 runs.
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Confirmation experiments were conducted to assess the rationality of the proposed
optimization approach. The confirmation experiments were repeated thrice with the
obtained optimal AW]C parameters through the SSO algorithm and their average values
are presented in Table 10. The table shows that the correlation between predicted and
experimentally measured response values is relatively good, with an average error of
3.38% for Kt, and 3.77% for Ra, respectively. Therefore, the proposed SSO algorithm can
be adequate for obtaining optimal processing conditions during AWJC of r-GO reinforced
FILs for better cut quality characteristics.

Table 10. Results of validation experiments for AWJC parameters obtained through SSO algorithm.

Responses SSO Predicted Experimental Error %
Kerf taper (°) 2.067 2.137 3.38
Surface roughness (um) 3.180 3.168 3.77

5. Conclusions

In this study, a hybrid approach of a parametric tuned ANFIS-salp swarm optimization
algorithm has been used for the modeling and optimization of AW]C parameters during
the processing of novel fiber intermetallic laminates. Based on the results of the proposed
hybrid approaches, the following inferences were attained:

o  The Box-Behnken design-based response surface methodology approach has been
effectively utilized for designing the experimental trails with a viable number of
experiments to minimize the time and cost.

e  The MFO algorithm was found to be outperformed in the training of the ANFIS
network parameters with an average MAPE of 0.16838 for kerf taper and 0.10713
for surface roughness, and RMSE of 0.00895 for kerf taper and 0.01315 for surface
roughness, respectively.

e  The hybrid MFO-ANFIS approach was found to be an efficient approach for intelli-
gent modeling of the AW]JC process to correlate its process parameters and response
characteristics, with average training and testing errors of 0.0056% and 0.0163% for
kerf taper, and 0.0088% and 0.0231% for surface roughness, respectively.

e  The optimal AWJC conditions for improved quality characteristics have been achieved
through a metaheuristic salp swarm optimization algorithm, which are: 1.004 wt% of
r-GO, 600 mm/min of TS, 214 MPa of WP, and 4 mm of SOD for an improved response
characteristic value such as Kt of 2.067° and Ra of 3.18 um, respectively.

e  The results of confirmation studies revealed that the proposed optimization approach
can be efficient in the prediction of optimal AW]C parameters with an error between
the experimental and SSO algorithm predicted values of 3.38% for Kt and 3.77% for
Ra, respectively.
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