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Abstract: Custom 450 stainless steel is the most desirable material across industries due to its
widespread application in the aerospace, defense and marine industries. Stainless-steel materials
are challenging to deal with and fall into the list of hard-to-process materials due to their low heat
conduction coefficient and high mechanical properties. In this research work, end milling was carried
out on Custom 450 stainless steel machined using TiAlN coated with tungsten carbide inserts that
have been cryo-treated (CT) for 24 h (24 h) and 36 h (36 h), as well as untreated (UT) inserts. The
inserts were evaluated in terms of feed force, feed rate and consistent depth of cut (ap) at various
spindle speeds (S). Also examined were the tool morphology, chip anatomy and surface morphology
of cryo-treated material compared to untreated inserts at various responses to cutting force (Fx, Fy,
Fz), cutting temperature (Tc), vibration and surface abrasion. For inserts that have been cryo-treated
for 36 h, the feed force (Fx) value was 44% and 5% less compared to inserts treated for 24 h and in
UT inserts, respectively. Furthermore, for 24-h and 36-h CT inserts, feed force (Fx) was 12% and 20%
less compared to a UT insert. Using 24-h cryo-treated inserts as opposed to UT inserts significantly
reduced the surface roughness by 20%. Cutting inserts that have undergone cryogenic treatment have
been observed to exhibit longer cutting tool life due to less wear and friction on the cutting edges.

Keywords: end milling; cryogenic treatment; surface abrasion; chip anatomy; tool morphology;
surface morphology; cutting force

1. Introduction

Stainless steels are frequently utilized in industries, including health, marine, defense
and nuclear power plants as well as springs, nuts, bolts and screws due to their high
strength and strong corrosion and oxidation resistance. This is because of their excep-
tional corrosion resistance, low heat conduction coefficient and good mechanical qualities.
However, due to its numerous advantageous qualities, including high flexibility, high
tensile strength, high fracture toughness and high work hardening rate, stainless-steel
alloys are primarily employed [1]. Custom 450 stainless steel is used for aeronautical
fittings, aerospace parts like bushings, shafts, valves and specific screws, as well as fuel
tanks, exhaust components, high-temperature engine parts, structural parts and cabin
components, landing gears and others. Custom 450 is a martensitic stainless steel grade
with excellent corrosion resistance (up to roughly 650 ◦C) and may have its mechanical
qualities greatly improved by heat treatment techniques [2]. Despite the fact that there are
several pieces of research on the machinability of stainless steels in the literature, there is
a dearth of publications about Custom 450 stainless steel. Moreover, information about
end milling on Custom 450 stainless steel is not found in publications. This experiment is
necessary due to the wide application of Custom 450 stainless steel.
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Due to its high Ni and Cr content, stainless steel has exceptional hardness and machin-
ability qualities. Hence, a very hard machining tool was needed. Tungsten carbide (WC-Co)
is one of the most used materials in the industry, and cutting tools made of this material
have a major impact on the effectiveness of machining processes and tooling costs. But
the challenge with tungsten-coated carbide tools is that they wear out and reach failure
rapidly [3,4]. This has the negative effects of poor surface quality, uneven tool wear, early
tool failure and BUE (build-up edge) on the tool flank face and crater face during machining.
BUE increases the frequency of tool wear and impairs the surface integrity of the work [5].
Working with hardened workpiece material increases the frequency of tool wear and dam-
age, which has an impact on product correctness. Lowering the cutting temperature is
the most feasible and successful approach to improving the machining efficiency of hard
materials [6].

Cryogenic processing, also known as cryogenic treatment, was developed for the
purpose of improving a material’s mechanical qualities. Through the microstructural
alterations during treatment, it extends a cutting tool’s life. Additionally, it can enhance a
material’s mechanical qualities from the core [7]. When cutting tool materials are subjected
to cryogenic treatment, the austenite phase transforms into martensite [8,9]. The heat
dissipation capacity is improved, the heating of the cutting edge is lowered and cutting
tool wearing is decreased due to the increase in thermal conductivity [10]. Reddy et al.
stated that the best method for reducing cutting force, extending tool life and improving
tool wear resistance is to cryo-treat the cutting tools [11].

Cryogenic treatment is the greatest option for extending cutting tool life because of
the lower tip temperature and better surface quality, which reduces wear on the cutting
tool by 67% and produces a 20% better surface polish compared to untreated tools [12,13].
According to studies by Sola et al. [14], Gill et al. [15] and Dhokey et al. [16], cryogenic
treatment considerably enhances material qualities including wear resistance, residual
stresses, hardness, toughness and thermal conductivity. According to Düzce and others,
Moore and Collins in 1993 and Sitki in 2015 investigated the cryo factors, such as the length
of the cryo soaking period, the rate of cooling and the tempering procedure, which are all
input parameters that affect how effectively cryogenic cutting tools perform and increase
tool life and productivity [6,12,17].

When the coated cutting tool inserts undergo cryogenic treatment, they perform better
than untreated cutting tools [18]. This treatment involves cooling the inserts to −196 ◦C
and holding them there for a set period of time (for example, 24 h, 36 h and 48 h), and
then bringing them to room temperature again slowly. Our tempering process followed
cryogenic treatment and the results showed that a high rate of martensite transformation
(α-Co to ε-Co) leads to improved mechanical properties. Sert et al. reported on the tem-
pering process for 2 h at 200 ◦C. The transformation of α-Co decreases from 33.958% to
18.748% on WC-Co carbide [9]. Ozbek et al., in 2016, investigated the turning operations on
AISI 304 stainless steel and stated that the tempering process releases internal stress. The
result shows that this process improves wear resistance and increases hardness from 1709.8
to 1812.6 HV. This is due to the precipitation of fine alpha, beta and eta phase carbides and
is proven by an improved carbide count from 2522 to 3330 [19]. According to Xun QIAO
et al., Weng et al. and Kumar et al., the retained austenite is more stable when tempering
temperatures are lower than 200 ◦C. The tempering of cryo-treated inserts involves increas-
ing grain size and evenly distributing the number of carbide particles to enhance thermal
conductivity and hardness [8,13,20]. According to research by Nirmal S. Kalsi et al. on the
amount of post-tempering and cryogenic treatment performed on the carbide-cobalt insert
tools used in turning operations, secondary carbides (W2 C and CO3 W3 C) are generated
during the process, which improve the tool’s performance [21,22]. Korade et al. conducted
several combinations of cryogenic treatment by increasing tempering temperature and
increasing the number of tempering levels, which caused hardness to decrease and wear
volume to increase. The machining performance and tool wear resistance during machining
were both improved upon the cryogenic treatment of coated carbide inserts according to
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a literature survey [23]. Using a cryo-treated tungsten carbide cutting tool, Jadhav et al.
performed turning operations on P20tool steel. The results revealed enhanced surface
finishing and diminished cutting forces [2]. The turning insert’s microstructure and flank
wear resistance both increased after cryogenic treatment, leading to higher machinability
and less tool wear. In a turning operation on P25 conducted by Gill et al., according to their
results, the cryogenic treatment improved the cutting tool life through an increase in flank
wear resistance [15]. AISI316 stainless steel was the subject of a thorough investigation
by Altan et al. in which the cryogenic treatment performance outcome demonstrated that
the toughness was not compromised while the cutting tool’s wear resistance and hardness
were increased [24]. Celik et al. demonstrated the increased wear resistance, cutting tool
hardness and fracture toughness of cryo-treated cutting inserts when milling Ti-6Al-4 V
titanium alloy that was machined using tungsten carbide [25]. Sivalingam et al. used
a Ti-6Al-4 V alloy work material for milling using cryo-treated and untreated tungsten
carbide inserts. Performance was looked into and, according to the study, cutting tools that
have undergone cryogenic treatment guard against plastic deformation due to high spindle
speeds. As a result, an enhanced surface roughness of 20–26% [26] can be attained. In a
study by Gill et al. on hot-rolled steel in 2011, a study by Kývak et al. on M42 HSS drilling
in 2015 and a study by Sahoo et al. in 2010, it was concluded that cryo-treated tungsten
carbide inserts lengthen tool life at high spindle speeds. Surface finishing and tool life play
key roles in the machining process. Coating and cryo treatment enhanced surface finishing
and increased wear resistance [27–29].

This experiment is necessary since there are few publications on Custom 450 stainless
steel. Despite the fact that there is much research in this area, cryogenically treated cutting
inserts have received relatively little attention in the literature when used in drilling, milling
and turning operations on different types of stainless steel. Moreover, end milling on
Custom 450 stainless steel is not covered in any of the publications. Therefore, the current
study is aimed at closing this research gap by examining the machining performance of
Custom 450 stainless steel using a cyro-treated cutting tool with respect to the various
responses to cutting force, cutting temperature and vibration. It is also aimed at examining
the surface abrasion, surface morphology, chip anatomy and tool morphology of the
workpiece. The results of this study may improve process optimization by providing a
framework and enhancing our understanding of process behavior.

2. Materials and Methods
2.1. Material

This study examines the workpiece material Custom 450 stainless steel prepared in
the process of cutting and grinding, which is used to remove dust and rust on a workpiece
and then obtain a glittering surface. The dimensions of 160 mm × 75 mm × 20 mm
(4 numbers) were prepared as shown in Figure 1. The chemical composition and mechanical
properties of Custom 450 stainless steel are shown in Tables 1 and 2. In accordance with the
ASTM-E8 standard [30], the specimens (workpieces) for the tensile test were made using a
wire electro-discharged machine. The determined tensile qualities included yield strength,
ultimate tensile strength and elongation. A Brinell hardness test was conducted using a
5 mm ball, 750 kg/load, and three values were observed and the average was taken into
account. In accordance with the ASTM B294-10 standard [31], a rock well hardness tester
was used to measure the hardness. In order to measure the hardness for the HRA scale, a
major load of 573.4 N was applied after a minor load of 98.07 N to establish the sample.
Three measurements of the hardness were taken to determine an average.
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Elongation (%) (50 mm gauge length) 17.5 
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Rockwell hardness (HRC) 32.5 
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Cutting environment UT, CT 24 h and CT 36 h (dry) 
Spindle speed 1500 rpm,2300 rpm,3100 rpm 
Feed rate (f) 0.1 mm/min 
Depth of cut 0.5 mm 
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Figure 1. Preparation of workpiece: (a) before grinding (b) after grinding (c) after milling. 
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Custom 450 stainless steel was end-milled in a CNC vertical machining center at 

room temperature and in a dry machining environment. A TiAlN-coated tungsten carbide 
insert was chosen as the cutting tool insert and a normal indexable tool holder was used. 
The cutting insert was removed after the machining preset dimensions were reached, in-
cluding a cutting length of 160 mm, a cutting width of 75 mm and a depth of cut of 1 mm 
in order to assess the tool wear performance. The complete experimental details are shown 
in Table 1. As the cutting parameters, the machining variables spindle speed (rpm), feed 
rate (mm/min) and depth of cut (mm) were used. The approach to experimentation for 
the current study is displayed in Table 2. Using a three-axis piezoelectric Kistler dyna-
mometer (maximum forces up to 10 kN) to monitor the cutting forces, the data were col-
lected in the system. The temperature was measured using an infrared thermometer of 
the noncontact IRX66 type (IR −50 to 1550 °C). This infrared light during the machining 
process moved along the machining cutting tool insert to measure in different locations 
and the average value was taken into account. In order to record the vibration signals 
during the milling process, a vibration sensor was attached to the spindle with the aid of 
a magnetic fixture. The KD10005LA acceleration sensor, a B&K data recorder and signal 

Figure 1. Preparation of workpiece: (a) before grinding (b) after grinding (c) after milling.

Table 1. Custom 450 stainless steel chemical structure and properties.

Property Value

Chemical composition
(content Wt%)

C-0.029; Si-0.387; Mn-0.528, P-0.015, S-0.002; Cr-14.67,
Mo-0.498; Ni-6.346; Cu-1.856, Nb-0.655; Fe-remaining

Ultimate Tensile Strength (MPa) 1020
Yield Strength (MPa) 939
Elongation (%) (50 mm gauge length) 17.5
Brinell hardness test (HB) 309
Rockwell hardness (HRC) 32.5

Table 2. Machining parameters.

Machine Tool CNC Milling Machining

Workpiece material Custom 450 stainless steel
Cutting tool insert TiAlN-coated tungsten carbide, APMT1135PDR YBG205
Cutting tool insert thickness 3.5 mm
Tool holder Diameter: 16 mm, length:150 mm
Cutting environment UT, CT 24 h and CT 36 h (dry)
Spindle speed 1500 rpm,2300 rpm,3100 rpm
Feed rate (f) 0.1 mm/min
Depth of cut 0.5 mm

2.2. Experimental Setup

Custom 450 stainless steel was end-milled in a CNC vertical machining center at room
temperature and in a dry machining environment. A TiAlN-coated tungsten carbide insert
was chosen as the cutting tool insert and a normal indexable tool holder was used. The
cutting insert was removed after the machining preset dimensions were reached, including
a cutting length of 160 mm, a cutting width of 75 mm and a depth of cut of 1 mm in order
to assess the tool wear performance. The complete experimental details are shown in
Table 1. As the cutting parameters, the machining variables spindle speed (rpm), feed rate
(mm/min) and depth of cut (mm) were used. The approach to experimentation for the
current study is displayed in Table 2. Using a three-axis piezoelectric Kistler dynamometer
(maximum forces up to 10 kN) to monitor the cutting forces, the data were collected in the
system. The temperature was measured using an infrared thermometer of the noncontact
IRX66 type (IR −50 to 1550 ◦C). This infrared light during the machining process moved
along the machining cutting tool insert to measure in different locations and the average
value was taken into account. In order to record the vibration signals during the milling
process, a vibration sensor was attached to the spindle with the aid of a magnetic fixture.
The KD10005LA acceleration sensor, a B&K data recorder and signal acquisition with
analysis software V7.1 made up the majority of the vibration system. Signals from two
directions were simultaneously measured by a vibration sensor. The X and Y axes of a
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sensor monitored the feed vibration and axial vibration, respectively, depending on where it
was located on the tool. The end-milled surface gauged Mitutoyo’s Model SJ 210 gauge was
used (accuracy of ±0.8 microns) to measure the end-milled workpiece’s surface roughness
in three different locations and the average value was taken. The schematic view of the
experimental setup is shown in Figure 2. The end milling chips and tool wear were observed
using scanning electron microscopy (SEM) for further analysis.
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2.3. Cryogenic Treatment

The insert for the present work was coated with tungsten carbide. The detailed
designation of the insert is shown in Table 2. In a custom-designed cryogenic chamber
(KRYO 550-16), which can cool the sample down to a deep cryogenic temperature (−196 ◦C),
the tungsten carbide inserts experienced cryogenic treatment. The cryogenic chamber was
stuffed using gas produced in the chamber where the liquid nitrogen was originally stored.
A computer controller was used to control how the cryogenic chamber interacted with an
atomizer. Due to the controlled flow of liquid nitrogen inside the cryogenic chamber, a
specific cooling rate was maintained for the temperature inside. Since the tungsten carbide
insert was kept inside the sealed chamber and shielded from the liquid nitrogen, there
was no risk of thermal shock harming it. Then, a 2 ◦C/min chilling process was used
to gradually lower the cryogenic chamber’s temperature from room temperature (RT) to
DCT (−196 ◦C). The temperature was maintained at this level (−196 ◦C) for 24 h and 36 h
before being progressively increased to room temperature. As depicted in Figure 2, the
cryo-treated tungsten insert was exposed to tempering cycles at 200 ◦C for 2 h to reduce
tensions brought on by the cryogenic treatment (Figure 3).
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3. Results and Discussion
3.1. Effect of Cryo-Treated Cutting Tool on Cutting Force, Vibration and Cutting Temperature
3.1.1. Cutting Force

The effects of the spindle speed on the feed force (Fx), normal force (Fy) and axial
force (Fz) under all machining conditions are shown in Figure 4 with a constant feed rate of
0.1 mm/min. It was noted that the workpiece and cutting tools were initially quite rigid
and the cutting force acquired maximum impact at lower cutting parameters. It caused
milling machines to need greater torque power to shear the workpiece material at low
spindle speeds (S) and feed rates (Vf). The feed force (Fx), was reduced by 12% and 20% for
24-h and 36-h cryo-treated cutting inserts, respectively, compared to UT. Normal force and
axial force were slightly increased at low spindle speeds. After increasing the spindle speed
from 1500 to 2300 rpm, the axial force (Fz) dropped by 9% when using 24-h CT and by 28%
when using 36-h CT inserts, whereas the feed force (Fx) decreased by 20% when using 24-h
CT and by 22% when using 36-h CT inserts. The normal force (Fy) decreased by 48% when
using 24-h CT and by 28% when using 36-h CT inserts compared to UT cutting inserts. A
lower cutting force was obtained in all directions by using cryo-treated cutting inserts. With
the exception of the 36-h cryo-treated insert, which saw a 5% and 44% reduced cutting force
compared to UT and 24-h CT inserts, respectively. Increasing the spindle speed typically
caused a reduction in the cutting force. The impact of cryogenic treatment on the cutting
force at a spindle speed of 3100 rpm, a feed rate of 0.1 mm per revolution and a cut depth
of 0.5 mm is shown in Figure 5; the three forces are the Fx, Fy and Fz at various speeds.
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3.1.2. Cutting Temperature

The cutting temperature (Tc) in the workpiece–tool interface area (rake) was measured
using a noncontact type IR thermometer with an accuracy of ±1.0 ◦C. By carefully focusing
an IR ray on the cutting zone during milling and noting the greatest temperature reached,
a tool–workpiece interface and heat were created. Due to friction between the tool and the
workpiece, the cutting temperature was detected. Higher cutting temperatures result in
less cutting force since the material may be deformed with less force. Due to the increasing
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shear stress, the workpiece became softer and required less cutting power to shear the
material. Consequently, higher spindle speeds generated more heat in the cutting zone,
shortened the tool–workpiece contact time and raised the shear plane angle [32]. When
using 24-h cryo-treated cutting tool inserts, the cutting zone temperature was 5–6% less
than the UT and 36-h cryo-treated cutting insert. This was proved by the cutting zone
temperature at various spindle speeds and consistent feed rates (0.1 mm/min) as shown
in Figure 6.
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3.1.3. Vibration

Figure 7 shows the vibration of UT and cryo-treated cutting inserts. As the amount
of friction between the workpiece and the UT cutting tool grew, the Tc also rose, leading
to wear on the cutting edge. Using the 24-h cryo-treated cutting inserts resulted in lower
friction due to the cutting zone temperature compared to the 36-h and UT inserts, as shown
in Figure 6. The vibration is also one of the factors for tool wear. From the observed
vibration, cryogenically treated inserts offer good strength and generate less vibration,
resulting in superior surface finishes because of their exceptional rigidity and minimum tool
wear even at higher spindle speeds, which the wear morphology SEM picture demonstrates.
Cryo-treated cutting tool performance is better than that of the UT cutting inserts.

3.2. Tool Morphology

Figure 8 shows the wear of tungsten carbide inserts as seen in SEM images. Cryo-
treated inserts had substantially less flank chipping than untreated ones. Even at low
cutting parameters, coating abrasion was detected in the rake face of the UT cutting inserts
due to the UT tool inserts’ low wear resistance because the cutting zone temperature and
friction both affected the UT inserts. Despite the fact that the material was substantially
removed at high cutting parameters, the friction and cutting zone temperature had no
impact on the cryo-treated inserts [33]. The preservation of the inserts’ sharpness through
CT was employed to stop the degradation of cutting tool inserts. Treated cutting inserts’
rake and flank face showed no signs of wear.

In addition, the chips formed the build-up edge by sticking to the sharp cutting edges
(BUE). As a result of work hardening over time, the generated BUE gradually became
extremely hard and produced more vibrations and cutting forces. An abrupt plastic
deformation at the tool edge resulted from this occurrence. Chips slipping over chip–tool
interfaces caused craters because of the BUE of the cutting tool. Higher spindle speeds
caused greater cutting temperatures in the cutting zone, which shortened tool life and
caused increased tool wear. In addition, faster cutting speeds resulted in reduced tool-chip
contact lengths, which concentrated cutting force towards the main cutting edge. The sharp
edge became softer as Tc increased and the increasing Fx close to the cutting edge resulted
in distortion and deflection [34,35].
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3.3. Surface Abrasion

Figure 9 shows variations of (Ra) of end milling on stainless steel 450 machined
by UT, 24-h and 36-h cryogenic-treated inserts. The end milling was conducted at feed
rates (Vf) of 0.1 mm/min and spindle speeds (S) of 1500, 2300 and 3100 rpm and at a
constant depth of cut of 0.5 mm. The 24-h cryo-treated cutting inserts performed better
than the UT inserts. Cryo-treated cutting tools had less friction and a lower cutting zone
temperature due to retaining their rigidity and sharpness during the cryogenic process. A
24-h cryo-treated cutting tool insert produced a better surface finishing of 0.269 microns
while being fed at a low speed of 1500 rpm. By using 24-h cryo-treated inserts rather than
the 36-h cryogenic-treated inserts and UT inserts, the surface roughness was reduced by
12%. At a high spindle speed of 3100 rpm, the cryo-treated cutting inserts improved the
surface finishing by 20% compared to untreated cutting inserts. A 24-h cryogenic treatment
enhanced the mechanical characteristics and preserved the hardness and attributes of the
coating at a high temperature while creating less vibration than a standard insert. The
untreated cutting inserts’ surface roughness was 28% higher due to increased friction and a
higher cutting temperature. The flakes (chips) stuck to each other layer by layer due to the
high temperature. This was due to the insert having undergone cryogenic treatment. This
observation shows that cutting temperature has an impact on Ra.
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3.4. Chip Anatomy

Figure 10 shows the SEM image of chip anatomy after milling at different spindle
speeds (1500, 2300 and 3100 rpm), a feed rate of 0.1 mm/min at a constant depth of cut of
0.5 mm. It is clear that the teeth were produced as serrated teeth after milling and have
shrunk as a consequence of cryogenic treatment. When feed and cutting were maintained
constantly, there appeared to be a rising trend in the chip segmentation frequency along
with an increase in the cutting velocity. However, when machining was performed quickly,
there was little time for chips to deform, making it impossible to effectively dissipate the
cutting heat, which led to adiabatic shearing and then chip breakage. Vibration affects
tool abrasion. Therefore, increased chip thickness in the UT cutting inserts may be seen
as a result of vibration. The expansion of the shear plane area led to an increase in the
chip thickness. As a result, as the spindle speed increased, the cutting force also increased,
promoting the production of periodic chips and raising the chip thickness. An increase
in Tc and high heat loads caused plastic deformation on the chips, as shown in Figure 10.
Machining at high-temperature regions became easier due to thermal softening. A more
significant number of serrated teeth can be seen on both sides of the untreated inserts at
a high spindle speed (spindle speed (S) of 3100 rpm and feed rate of Vf 0.1 mm/min).
When the material was removed at high temperatures, shear marks appeared and the chips
were more deeply serrated because of the friction on the workpiece, and the chip particles
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adhered as shown in Figure 10. These tools had different chip lengths and twists in contrast
to those under cryo-treated circumstances. The lengthier chips were a result of the intense
friction that produced excessive heat during material cutting at a low feed rate and spindle
speed, as well as the chips being stuck together [36,37].
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Significant factors in chip morphology are the spindle speed and feed rate. Feed marks
and saw teeth were observed from cryo-treated cutting tool inserts at high spindle speeds.
Ridges appeared in white and dark lines in feed marks. The saw tooth length and chip
separation frequency were the two most crucial chip characteristics. The chip separation
frequency and saw tooth distance were inversely correlated [38]. There are still some
ambiguous aspects regarding the mechanism of the formation of serrated chips despite
their frequent occurrence during high-speed machining of ductile materials. By using a
cryo-treated cutting tool insert, lamellar chips formed as shown in Figure 10, removing
the material at the low heat generated. The lamellar chip formation process involved
continuous and periodic chip formation. In this experiment, cryo-treated cutting inserts
had no severe friction and less heat generation, identified by the small length of the curve
type of chips. Due to the lesser amount of friction, wear did not occur on the cutting tool
edges, which led to an increased tool life.
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3.5. Surface Morphology

When machining a workpiece for a long time (increasing the number of passes), the
feed marks became less sharp, resulting in the smearing of the working material. Smearing
can occur during tool movement along the feed direction when the workpiece material
flows to the side under crushing forces between the minor flank face and the machined
surface. The following defects were observed from the machined surfaces.

The workpiece material’s carbide particles and built-up edge (BUE) both aided in the
creation of surface microvoids. The cutting tool, some of the BUE and the hard particles
in the material could not deform at the plasticized layer because they were harder than
the material of the workpiece. The hard particles cracked to release the strain. Following
the removal of these particles, the chip and microvoids remained on the machined surface,
as shown in Figure 11. Microvoids on the surface of a workpiece can adversely affect the
subsequent mechanical properties of the component. Because UT and 36-h CT cutting tool
inserts are less rigid, they produced microvoids. Due to their lower rigidity, they did not
remove material properly at a low spindle speed and the chips stuck to the surrounding of
the microvoids [39]. According to Figure 10, the 24-h cryo-treated cutting tool inserts led to
better machining performance. Since the cutting tool was sharp, it removed chip material
from the workpiece and did not generate more heat during the machining process. In order
to make this observation, the Fx and Ra were measured. There were feed marks visible in
every sample that was machined. In all the machined samples, feed marks were observed.
The spindle speed and flank wear had a considerable impact on the surface feed markings
on machined workpieces. It was discovered that feed marks on the machined surface were
brought about by tool rotation and tool motion, which together mapped the lay pattern.
Furthermore, there was a great deal of microchip debris visible. The flaw was brought
about due to cracked chips being scattered throughout the cutting surface. Chip materials
were deposited on the surface of the workpiece as a result of the high heat produced by the
UT cutting tool.
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High local cutting temperatures generated by fast cutting can cause pitting corrosion
on the torn surface. Tool–workpiece interfaces formed melting layers and surface layers
underwent phase transformation, leaving oxides and metal debris adherent to the machined
surface at a high spindle speed (3100 rpm, UT), as shown in Figure 10. The way a burr
forms during machining can be used to determine the type of burr and the mechanism
of its production. A material will swell at the sides when compressed until it experiences
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plastic deformation. A 36-h cryo-treated and UT cutting tool used at the same spindle speed
after machining a workpiece produced high depths of feed marks, debris and microvoids
compared to a 24-h cryo-treated cutting tool [39]. Figure 10 shows that the 24-h cryo-treated
cutting tool performed better than the 36-h cryo-treated inserts.

4. Conclusions

The aim of this research was to analyze the milling operations of Custom 450 stainless
steel pieces using TiAlN-coated tungsten carbide inserts in UT and cryogenically treated
(24-h CT and 36-h CT) conditions. Evaluations were performed on the vibration, chip
anatomy, Fx, tool morphology, Ra and other output reactions.

• When UT and CT were compared at low spindle speeds, the feed force decreased by
12% and 20%, respectively, by cryo-treating the cutting insert for 24 h and 36 h. The
cutting force of the 36-h cryo-treated inserts reduced to 5% and 44% compared to the
UT and 24-h cryo-treated inserts, respectively. Due to a lower Tc compared to the 36-h
and UT inserts, friction was reduced when the cutting inserts were employed after
being cryo-treated for 24 h. Cryogenically treated inserts had good stiffness and less
tool wear, even at higher spindle speeds.

• The friction or temperature of the cutting zone did not affect the cryo-treated inserts.
Cryogenic treatment was used to stop the degeneration of cutting tool inserts because
it maintains the inserts’ sharpness. On the treated cutting inserts, rake and flank face
wear were undetectable.

• Cryo-treated cutting tool inserts that were fed at a low speed for 24 h at a rate of
1500 rpm resulted in a superior surface polish of 0.269 microns. The surface polish
generated by cryo-treated cutting inserts was 20% better than that by untreated cutting
inserts at a high spindle speed of 3100 rpm. A 24-h cryo-treated insert improved the
cutting tool inserts’ mechanical properties while maintaining the coating’s quality and
toughness at high temperatures.

• The results of this experiment demonstrate that cryo-treated cutting inserts produce
less heat and have low levels of friction. The cutting tool edges do not wear out as
quickly due to the reduced friction, which may result in an increase in the tool’s life.

• When employed at the same spindle speed, a 36-h cryo-treated cutting tool and UT
tool left behind a workpiece with more feed marks, debris and microvoids than a 24-h
treated cutting tool produced.
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