6 research outputs found
Role of Alanine Racemase Mutations in Mycobacterium tuberculosis d-Cycloserine Resistance.
A screening of more than 1,500 drug-resistant strains of Mycobacterium tuberculosis revealed evolutionary patterns characteristic of positive selection for three alanine racemase (Alr) mutations. We investigated these mutations using molecular modeling, in vitro MIC testing, as well as direct measurements of enzymatic activity, which demonstrated that these mutations likely confer resistance to d-cycloserine
Evidence That Replication-Associated Mutation Alone Does Not Explain Between-Chromosome Differences In Substitution Rates
Since Haldane first noticed an excess of paternally derived mutations, it has
been considered that most mutations derive from errors during germ line
replication. Miyata et al. (1987) proposed that differences in the rate of
neutral evolution on X, Y, and autosome can be employed to measure the extent of
this male bias. This commonly applied method assumes replication to be the sole
source of between-chromosome variation in substitution rates. We propose a
simple test of this assumption: If true, estimates of the male bias should be
independent of which two chromosomal classes are compared. Prior evidence from
rodents suggested that this might not be true, but conclusions were limited by a
lack of rat Y-linked sequence. We therefore sequenced two rat Y-linked bacterial
artificial chromosomes and determined evolutionary rate by comparison with
mouse. For estimation of rates we consider both introns and synonymous rates.
Surprisingly, for both data sets the prediction of congruent estimates of
α is strongly rejected. Indeed, some comparisons suggest a female bias
with autosomes evolving faster than Y-linked sequence. We conclude that the
method of Miyata et al. (1987) has the potential to provide incorrect estimates.
Correcting the method requires understanding of the other causes of substitution
that might differ between chromosomal classes. One possible cause is
recombination-associated substitution bias for which we find some evidence. We
note that if, as some suggest, this association is dominantly owing to male
recombination, the high estimates of α seen in birds is to be expected
as Z chromosomes recombine in males
Mycobacterium tuberculosis Lineages Associated with Mutations and Drug Resistance in Isolates from India.
Current knowledge on resistance-conferring determinants in Mycobacterium tuberculosis is biased toward globally dominant lineages 2 and 4. In contrast, lineages 1 and 3 are predominant in India. In this study, we performed whole-genome sequencing of 498 MDR M. tuberculosis isolates from India to determine the prevalence of drug resistance mutations and to understand the genomic diversity. A retrospective collection of 498 M. tuberculosis isolates submitted to the National Institute for Research in Tuberculosis for phenotypic susceptibility testing between 2014 to 2016 were sequenced. Genotypic resistance prediction was performed using known resistance-conferring determinants. Genotypic and phenotypic results for 12 antituberculosis drugs were compared, and sequence data were explored to characterize lineages and their association with drug resistance. Four lineages were identified although lineage 1 predominated (43%). The sensitivity of prediction for isoniazid and rifampicin was 92% and 98%, respectively. We observed lineage-specific variations in the proportion of isolates with resistance-conferring mutations, with drug resistance more common in lineages 2 and 3. Disputed mutations (codons 430, 435, 445, and 452) in the rpoB gene were more common in isolates other than lineage 2. Phylogenetic analysis and pairwise SNP difference revealed high genetic relatedness of lineage 2 isolates. WGS based resistance prediction has huge potential, but knowledge of regional and national diversity is essential to achieve high accuracy for resistance prediction. IMPORTANCE Current knowledge on resistance-conferring determinants in Mycobacterium tuberculosis is biased toward globally dominant lineages 2 and 4. In contrast, lineages 1 and 3 are predominant in India. We performed whole-genome sequencing of 498 MDR M. tuberculosis isolates from India to determine the prevalence of drug resistance mutations and to understand genomic diversity. Four lineages were identified although lineage 1 predominated (43%). The sensitivity of prediction for isoniazid and rifampicin was 92% and 98%, respectively. We observed lineage-specific variations in the proportion of isolates with resistance-conferring mutations, with drug resistance more common in lineages 2 and 3. Disputed mutations (codons 430, 435, 445, and 452) in the rpoB gene were more common in isolates other than lineage 2. Phylogenetic analysis and pairwise SNP difference revealed high genetic relatedness of lineage 2 isolates. WGS based resistance prediction has huge potential, but knowledge of regional and national diversity is essential to achieve high accuracy for resistance prediction