5 research outputs found

    Overexpression of proto-oncogene FBI-1 activates membrane type 1-matrix metalloproteinase in association with adverse outcome in ovarian cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>FBI-1 (factor that binds to the inducer of short transcripts of human immunodeficiency virus-1) is a member of the POK (POZ and Kruppel) family of transcription factors and play important roles in cellular differentiation and oncogenesis. Recent evidence suggests that FBI-1 is expressed at high levels in a subset of human lymphomas and some epithelial solid tumors. However, the function of FBI-1 in human ovarian cancers remains elusive.</p> <p>Results</p> <p>In this study, we investigated the role of FBI-1 in human ovarian cancers, in particularly, its function in cancer cell invasion via modulating membrane type 1-matrix metalloproteinase (MT1-MMP). Significantly higher FBI-1 protein and mRNA expression levels were demonstrated in ovarian cancers samples and cell lines compared with borderline tumors and benign cystadenomas. Increased FBI-1 mRNA expression was correlated significantly with gene amplification (P = 0.037). Moreover, higher FBI-1 expression was found in metastatic foci (P = 0.036) and malignant ascites (P = 0.021), and was significantly associated with advanced stage (P = 0.012), shorter overall survival (P = 0.032) and disease-free survival (P = 0.016). <it>In vitro</it>, overexpressed FBI-1 significantly enhanced cell migration and invasion both in OVCA 420 and SKOV-3 ovarian carcinoma cells, irrespective of <it>p53 </it>status, accompanied with elevated expression of MT1-MMP, but not MMP-2 or TIMP-2. Moreover, knockdown of MT1-MMP abolished FBI-1-mediated cell migration and invasion. Conversely, stable knockdown of FBI-1 remarkably reduced the motility of these cells with decreased expression of MT1-MMP. Promoter assay and chromatin immunoprecipitation study indicated that FBI-1 could directly interact with the promoter spanning ~600bp of the 5'-flanking sequence of MT1-MMP and enhanced its expression in a dose-dependent manner. Furthermore, stable knockdown and ectopic expression of FBI-1 decreased and increased cell proliferation respectively in OVCA 420, but not in the p53 null SKOV-3 cells.</p> <p>Conclusions</p> <p>Our results suggested an important role of FBI-1 in ovarian cancer cell proliferation, cell mobility, and invasiveness, and that FBI-1 can be a potential target of chemotherapy.</p

    The β1-integrin-p-FAK-p130Cas-DOCK180-RhoA-vinculin is a novel regulatory protein complex at the apical ectoplasmic specialization in adult rat testes

    No full text
    During spermatogenesis, step 1 spermatids (round spermatids) derive from spermatocytes following meiosis I and II at stage XIV of the epithelial cycle begin a series of morphological transformation and differentiation via 19 steps in rats to form spermatozoa. This process is known as spermiogenesis, which is marked by condensation of the genetic material in the spermatid head, formation of the acrosome and elongation of the tail. Since developing spermatids are lacking the robust protein synthesis and transcriptional activity, the cellular, molecular and morphological changes associated with spermiogenesis rely on the Sertoli cell in the seminiferous epithelium via desmosome and gap junction between Sertoli cells and step 1–7 spermatids. Interestingly, a unique anchoring junction type arises at the interface of step 8 spermatid and Sertoli cell known as apical ectoplasmic specialization (apical ES). Once it appears, apical ES is the only anchoring device restricted to the interface of step 8–19 spermatids and Sertoli cells to confer spermatid polarity, adhesion, signal communication and structural support, and to provide nutritional support during spermiogenesis, replacing desmosome and gap junction. While the adhesion protein complexes that constitute the apical ES are known, the signaling protein complexes that regulate apical ES dynamics, however, remain largely unknown. Herein we report the presence of a FAK (focal adhesion kinase)-p130Cas (p130 Crk-associated substrate)-DOCK180 (Dedicator of cytokinesis 180)-RhoA (Ras homolog gene family, member A)-vinculin signaling protein complex at the apical ES, which is also an integrated component of the β1-integrin-based adhesion protein complex based on co-immunoprecipitation experiment. It was also shown that besides p-FAK-Tyr397 and p-FAK-Tyr576, β1-integrin, p130Cas, RhoA and vinculin displayed stage-specific expression in the seminiferous epithelium during the epithelial cycle with predominant localization at the apical ES as demonstrated by immunohistochemistry. Based on these findings, functional studies can now be performed to assess the role of this β1-integrin-p-FAK-p130Cas-DOCK180-RhoA-vinculin protein complex in apical ES dynamics during spermiogenesis
    corecore