289 research outputs found
Wireless Biosensing Network for Drivers' Health Monitoring
Biosensors integrated into the vehicle controller area network are used for detecting symptoms such as anxiety, pain, and fatigue that may affect driving safety. The proposed system provides a flexible option for implementation in a diverse range of mass-produced automotive accessories without affecting the driver's movement
Improvements on “Secure multi-party quantum summation based on quantum Fourier transform”
Recently, a quantum multi-party summation protocol based on the quantum Fourier transform has been proposed (Yang et al. in Quantum Inf Process 17:129, 2018). The protocol claims to be secure against both outside and participant attacks. However, a closer look reveals that the player in charge of generating the required multi-partite entangled states can launch two kinds of attacks to learn about other parties’ private integer strings without being caught. In this paper, we present these attacks and propose countermeasures to make the protocol secure again. The improved protocol not only can resist these attacks but also remove the need for the quantum Fourier transform and encoding quantum operations by participants
Neutralisation of SARS-CoV-2 by monoclonal antibody through dual targeting powder formulation
Neutralising monoclonal antibody (mAb) is an important weapon in our arsenal for combating respiratory viral infections. However, the effectiveness of neutralising mAb has been impeded by the rapid emergence of mutant variants. Early administration of broad-spectrum mAb with improved delivery efficiency can potentially enhance efficacy and patient outcomes. WKS13 is a humanised mAb which was previously demonstrated to exhibit broad-spectrum activity against SARS-CoV-2 variants. In this study, a dual targeting formulation strategy was designed to deliver WKS13 to both the nasal cavity and lower airways, the two critical sites of infection caused by SARS-CoV-2. Dry powders of WKS13 were first prepared by spray drying, with cyclodextrin used as stabiliser excipient. Two-fluid nozzle (TFN) was used to produce particles below 5 μm for lung deposition (C-TFN formulation) and ultrasonic nozzle (USN) was used to produce particles above 10 μm for nasal deposition (C-USN formulation). Gel electrophoresis and size exclusion chromatography studies showed that the structural integrity of mAb was successfully preserved with no sign of aggregation after spray drying. To achieve dual targeting property, C-TFN and C-USN were mixed at various ratios. The aerosolisation property of the mixed formulations dispersed from a nasal powder device was examined using a Next Generation Impactor (NGI) coupled with a glass expansion chamber. When the ratio of C-TFN in the mixed formulation increased, the fraction of particles deposited in the lung increased proportionally while the fraction of particles deposited in the nasal cavity decreased correspondingly. A customisable aerosol deposition profile could therefore be achieved by manipulating the mixing ratio between C-TFN and C-USN. Dual administration of C-TFN and C-USN powders to the lung and nasal cavity of hamsters, respectively, was effective in offering prophylactic protection against SARS-CoV-2 Delta variant. Viral loads in both the lung tissues and nasal wash were significantly reduced, and the efficacy was comparable to systemic administration of unformulated WKS13. Overall, dual targeting powder formulation of neutralising mAb is a promising approach for prophylaxis of respiratory viral infections. The ease and non-invasive administration of dual targeting nasal powder may facilitate the widespread distribution of neutralising mAb during the early stage of unpredictable outbreaks
Quantum fluids of light
This article reviews recent theoretical and experimental advances in the
fundamental understanding and active control of quantum fluids of light in
nonlinear optical systems. In presence of effective photon-photon interactions
induced by the optical nonlinearity of the medium, a many-photon system can
behave collectively as a quantum fluid with a number of novel features stemming
from its intrinsically non-equilibrium nature. We present a rich variety of
photon hydrodynamical effects that have been recently observed, from the
superfluid flow around a defect at low speeds, to the appearance of a
Mach-Cherenkov cone in a supersonic flow, to the hydrodynamic formation of
topological excitations such as quantized vortices and dark solitons at the
surface of large impenetrable obstacles. While our review is mostly focused on
a class of semiconductor systems that have been extensively studied in recent
years (namely planar semiconductor microcavities in the strong light-matter
coupling regime having cavity polaritons as elementary excitations), the very
concept of quantum fluids of light applies to a broad spectrum of systems,
ranging from bulk nonlinear crystals, to atomic clouds embedded in optical
fibers and cavities, to photonic crystal cavities, to superconducting quantum
circuits based on Josephson junctions. The conclusive part of our article is
devoted to a review of the exciting perspectives to achieve strongly correlated
photon gases. In particular, we present different mechanisms to obtain
efficient photon blockade, we discuss the novel quantum phases that are
expected to appear in arrays of strongly nonlinear cavities, and we point out
the rich phenomenology offered by the implementation of artificial gauge fields
for photons.Comment: Accepted for publication on Rev. Mod. Phys. (in press, 2012
Radiotherapy following breast-conserving surgery for screen-detected ductal carcinoma in situ: indications and utilisation in the UK. Interim findings from the Sloane Project
Use of radiotherapy (RT) after breast-conserving surgery (BCS) for ductal carcinoma in situ (DCIS) varies according to country, precedent and prejudice. Results from a preliminary analysis of the data available within the UK Sloane Project can be appreciated in the context of the uncertainty concerning the selection of adjuvant RT following BCS for DCIS. There was a marked geographical variation in the use of RT within the United Kingdom. However, overall, patients with DCIS treated with BCS were significantly more likely to have RT planned (and given) if they had large (⩾15 mm), intermediate or high-grade tumours or if central comedo-type necrosis was present. Unexpectedly, margin width did not appear to have a significant effect on the decision-making process. However, the Van Nuys Prognostic Index did significantly affect the chances of getting planned RT in the univariate analysis, suggesting that clinicians may be starting to use this scoring system in routine practice to assist in decision making
Recommended from our members
Point-of-care Head and Neck Sonography for Clinical Problem-solving: Impact of One-day Training Sessions on Medical Student Education
Introduction The curriculum for medical student education is continuously evolving to emphasize knowledge acquisition with critical problem-solving skills. Medical schools have started to implement curricula to teach point-of-care ultrasound skills. To our knowledge, the expansion into head and neck sonography for medical student education is novel and has never been studied. Our objective was to determine the feasibility of implementing point-of-care head and neck sonography and critical problem-solving instruction for medical student education. Methods This was a cross-sectional study enrolling third-year medical students with minimal prior ultrasound experience. A one-day educational curriculum focusing on the use of head and neck ultrasound for clinical problem-solving was integrated into one of the week-long intersessions. The components of point-of-care ultrasound workshop included asynchronous learning, one-hour didactic lecture, followed by a pre-test assessment, then a one-day hands-on workshop, and finally a post-test assessment administered at the end of the training session. Results A total of 123 subjects participated in this study. Ninety-one percent completed the questionnaire prior to the workshop and 83% completed the post-test questionnaire. The level of comfort with using an ultrasound system significantly increased from 31% to 92%. Additionally, the comfort level in interpreting ultrasound images also significantly increased from 21% to 84%. Eighty-nine percent (95% CI, 86%-97%) had an interest in learning ultrasound and would enroll in an optional ultrasound curriculum if given the opportunity. Knowledge of specific ultrasound applications also increased from 60% (after asynchronous learning and lectures) to 95% (after additional hands-on sonographic training). Conclusion At our institution, we successfully integrated point-of-care head and neck sonography and critical problem-solving instruction for medical student education.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Environmental Justice and the Role of Criminology: An Analytical Review of 33 Years of Environmental Justice Research
An increasing number of scholars and activists have begun to tackle a variety of issues relevant to environmental justice studies. This study attempts to address the role of criminologists in this domain. The authors examine 425 environmental justice articles in 204 academic journals, representing 18 programs/departments between 1970 and 2003. First, they measure the environmental justice contributions in the literature by academic department or activist affiliation. Second, they identify the major themes in the literature as they have developed and reveal the current and future directions of environmental justice studies. Such themes include the spatial distribution of hazards, social movements, law and public policy, and environmental discrimination. Finally, the authors seek to call attention to the evident linkages between accepted areas of criminological scholarship and environmental justice. From this latter objective, the authors seek to demonstrate how criminology and criminal justice can advance this critical dialogue and social movement
Roadmap on optical security
Information security and authentication are important challenges facing society. Recent attacks by hackers on the databases of large commercial and financial companies have demonstrated that more research and development of advanced approaches are necessary to deny unauthorized access to critical data. Free space optical technology has been investigated by many researchers in information security, encryption, and authentication. The main motivation for using optics and photonics for information security is that optical waveforms possess many complex degrees of freedom such as amplitude, phase, polarization, large bandwidth, nonlinear transformations, quantum properties of photons, and multiplexing that can be combined in many ways to make information encryption more secure and more difficult to attack. This roadmap article presents an overview of the potential, recent advances, and challenges of optical security and encryption using free space optics. The roadmap on optical security is comprised of six categories that together include 16 short sections written by authors who have made relevant contributions in this field. The first category of this roadmap describes novel encryption approaches, including secure optical sensing which summarizes double random phase encryption applications and flaws [Yamaguchi], the digital holographic encryption in free space optical technique which describes encryption using multidimensional digital holography [Nomura], simultaneous encryption of multiple signals [Pérez-Cabré], asymmetric methods based on information truncation [Nishchal], and dynamic encryption of video sequences [Torroba]. Asymmetric and one-way cryptosystems are analyzed by Peng. The second category is on compression for encryption. In their respective contributions, Alfalou and Stern propose similar goals involving compressed data and compressive sensing encryption. The very important area of cryptanalysis is the topic of the third category with two sections: Sheridan reviews phase retrieval algorithms to perform different attacks, whereas Situ discusses nonlinear optical encryption techniques and the development of a rigorous optical information security theory. The fourth category with two contributions reports how encryption could be implemented at the nano- or micro-scale. Naruse discusses the use of nanostructures in security applications and Carnicer proposes encoding information in a tightly focused beam. In the fifth category, encryption based on ghost imaging using single-pixel detectors is also considered. In particular, the authors [Chen, Tajahuerce] emphasize the need for more specialized hardware and image processing algorithms. Finally, in the sixth category, Mosk and Javidi analyze in their corresponding papers how quantum imaging can benefit optical encryption systems. Sources that use few photons make encryption systems much more difficult to attack, providing a secure method for authentication.Centro de Investigaciones ÓpticasConsejo Nacional de Investigaciones Científicas y Técnica
Corneal Sensitivity and Dry Eye Symptoms in Patients with Keratoconus.
PURPOSE: To investigate corneal sensitivity to selective mechanical, chemical, and thermal stimulation and to evaluate their relation to dry eye symptoms in patients with keratoconus. METHODS: Corneal sensitivity to mechanical, chemical, and thermal thresholds were determined using a gas esthesiometer in 19 patients with keratoconus (KC group) and in 20 age-matched healthy subjects (control group). Tear film dynamics was assessed by Schirmer I test and by the non-invasive tear film breakup time (NI-BUT). All eyes were examined with a rotating Scheimpflug camera to assess keratoconus severity. RESULTS: KC patients had significatly decreased tear secretion and significantly higher ocular surface disease index (OSDI) scores compared to controls (5.3+/-2.2 vs. 13.2+/-2.0 mm and 26.8+/-15.8 vs. 8.1+/-2.3; p0.05). The mean threshold for selective mechanical (KC: 139.2+/-25.8 vs. control: 109.1+/-24.0 ml/min), chemical (KC: 39.4+/-3.9 vs. control: 35.2+/-1.9%CO2), heat (KC: 0.91+/-0.32 vs. control: 0.54+/-0.26 Delta degrees C) and cold (KC: 1.28+/-0.27 vs. control: 0.98+/-0.25 Delta degrees C) stimulation in the KC patients were significantly higher than in the control subjects (p0.05), whereas in the control subjects both mechanical (r = 0.52, p = 0.02), chemical (r = 0.47, p = 0.04), heat (r = 0.26, p = 0.04) and cold threshold (r = 0.40, p = 0.03) increased with age. In the KC group, neither corneal thickness nor tear flow, NI-BUT or OSDI correlated significantly with mechanical, chemical, heat or cold thresholds (p>0.05 for all variables). CONCLUSIONS: Corneal sensitivity to different types of stimuli is decreased in patients with keratoconus independently of age and disease severity. The reduction of the sensory input from corneal nerves may contribute to the onset of unpleasant sensations in these patients and might lead to the impaired tear film dynamics
Large adaptive optics survey for substellar objects around Young, Nearby, Low-mass Stars with Robo-AO
We present results from the Large Adaptive optics Survey for Substellar Objects, where the goal is to directly image new substellar companions (<70 MJup) at wide orbital separations (≳50 au) around young (≲300 Myr), nearby (<100 pc), low-mass (≈0.1–0.8 M☉) stars. We report on 427 young stars imaged in the visible (i′) and near-infrared (J or H) simultaneously with Robo-AO on the Kitt Peak 2.1 m telescope and later the Maunakea University of Hawaii 2.2 m telescope. To undertake the observations, we commissioned a new infrared camera for Robo-AO that uses a low-noise high-speed SAPHIRA avalanche photodiode detector. We detected 121 companion candidates around 111 stars, of which 62 companions are physically associated based on Gaia DR2 parallaxes and proper motions, another 45 require follow-up observations to confirm physical association, and 14 are background objects. The companion separations range from 2 to 1101 au and reach contrast ratios of 7.7 mag in the near-infrared compared to the primary. The majority of confirmed and pending candidates are stellar companions, with ∼5 being potentially substellar and requiring follow-up observations for confirmation. We also detected a 43 ± 9 MJup and an 81 ± 5 MJup companion that were previously reported. We found 34 of our targets have acceleration measurements detected using Hipparcos–Gaia proper motions. Of those, 58-+1412% of the 12 stars with imaged companion candidates have significant accelerations (c2 > 11.8), while only 23-+611% of the remaining 22 stars with no detected companion have significant accelerations. The significance of the acceleration decreases with increasing companion separation. These young accelerating low-mass stars with companions will eventually yield dynamical masses with future orbit monitoring
- …