27 research outputs found

    Characterization of Biocomposites from Polylactic Acid and Cellulose of Oil Palm Empty Fruit Bunch

    Get PDF
    Biocomposites are polymers reinforced with natural fibers, such as cellulose. This research aims to synthesize cellulose from Oil Palm Empty Fruit Bunch (OPEFB) and biocomposites from PLA and cellulose. In this study, cellulose was obtained through alkalization, hydrolysis, and bleaching of OPEFB. Biocomposites production was carried out by mixing PLA and cellulose using the extrusion method. In the extrusion method, PLA and cellulose of OPEFB were mixed using an extruder above the melting point of PLA of 170°C. The output product of an extruder was then pressed using a compression moulding machine to form biocomposites. The tensile strength of biocomposites had a smaller value than pure PLA, whereas the modulus young of biocomposites with 5% by weight of cellulose had a higher value than pure PLA. The decrease in the mechanical properties of biocomposites was caused by poor adhesion between PLA and cellulose. The water absorption of biocomposites was greater than pure PLA, which was influenced by cellulose's characteristics as hydrophilic and PLA is hydrophobic. Also, the higher water absorption in biocomposites accelerated the weight loss of biodegradability

    Improvement of Properties of Poly(L-lactic acid) through Solution Blending of Biodegradable Polymers

    Get PDF
    This study concerns the improvement and enhancement of the properties of poly(l-lactic acid) (PLLA) through simple solution blending of pure PLLA with different kinds of biodegradable polymers. Synthesized PLLA was blended with synthesized poly(d,l-lactic acid) (PDLLA) or poly(ethylene glycol) (PEG) at various composition ratios in a solvent mixture of dichloromethane/ethanol at room temperature to produce dipolymer. The polymer-blend properties were analyzed using FTIR, DSC, UTM data and an enzymatic degradation test was conducted. It was found that PLLA blend films were obtained with limitation of the second polymer content up to 20% (w) through solvent casting. From the DSC data, two different melting temperature peaks showed that stereocomplex formation occurred during polymer precipitation for all PLLA/PDLLA blends, while only one single melting temperature peak appeared in the PLLA/PEG blend. Regarding the mechanical properties, the PLLA/PEG blend showed better performance with an improvement of the mechanical strength by around 11.18% and an improvement of the elongation at break by around 89% compared to pure PLLA. Furthermore, after the 48-hour enzymatic biodegradability test, the PLLA/PEG blends showed improvement of biodegradability with 21.88% of sample weight-loss compared to 2.53% for pure PLLA

    Variasi Jarak Antar Layer Bentonit Pada Pembuatan Nanokomposit Pla-Bentonit Sebagai Kemasan Makanan

    Get PDF
    In this study, bentonite was used as a filler in the synthesis of polylactic acid (PLA) nanocomposite. The mechanical property of PLA-Bentonite nanocomposite was treated using two different surfactants, namely octadecyl amine (ODA) and trimethyl stearyl ammonium chloride (TSC) at two different concentration (20 mmol and 40 mmol). The treatments of ODA and TSC in the matrix with regards to the basal spacing of bentonite stacks  measured by X-Ray Diffraction (XRD) analysis. The results showed a significant increase in basal spacing was obtained when TSC 40 was applied for treatment. Data of Fourier Transform Infrared Spectroscopy (FTIR) suggested that this increase was caused by the incorporation of surfactant into the bentonite stacks. Most of the PLA-Bentonite nanocomposite can form intercalation structure, while a sample containing TSC 40 formed exfoliation structure. This exfoliation structure resulted in a film with the best tensile strength and water vapor permeability compared to the others. The film containing TSC 40 showed the lowest reduction in water activity, almost similar to the bread sample wrapped using conventional plastic. The bread wrapped with TSC 40 film was not grown by fungi as opposed to the conventional plastic, showing the potential of the nanocomposite film as food packaging

    Production of Biodegradable Sulfonated Methyl Ester by a Falling Film Reactor for ASP Flooding in EOR

    Get PDF
    Petroleum production can be improved through enhanced oil recovery (EOR) methods such as chemical injection. This study focused on sulfonation of methyl ester using SO3 dissolved in oleum compounds (H2SO4.SO3) in a mini-pilot falling film reactor at 70 °C and its application for chemical EOR with ASP flooding. The reactor was equipped with cooling water to facilitate heat transfer in view of the highly exothermic reaction. Biodegradable methyl ester sulfonate, a biosurfactant, was produced from esterification of vegetable oils, palm kernel oil, and coconut oil. The MES products were characterized by Fourier transform infrared testing, which showed S=O and -OH groups peaks, indicating that sulfonation had occurred. The IFT test data showed that the MES from CNO produced the lowest IFT values for light oil and heavy oil, equal to 11.4 mN/m and 10.3 mN/m, respectively. The effect of the MES concentration on the phase behavior was an increase of the IFT value before being applied in ASP flooding, and a decrease after reaching the optimum condition. The EOR core flooding test with the formulated ASP resulted in original oil in place (OOIP) percentages in the range of 12 to 23.5%. The highest acquisition was 23.53% OOIP for an ASP composition of 200 ppm, 0.5%wt, 2800 ppm, respectively

    The Effect of Nanocrystalline Cellulose (NCC) Filler on Polylactic Acid (PLA) Nanocomposite Properties

    Get PDF
    This paper discusses the effect of nanocrystalline cellulose (NCC) when used as filler on polylactic acid (PLA)-based nanocomposites and on its mechanical properties and permeability. NCC was produced from commercial cellulose and another cellulose source, i.e. oil palm empty fruit bunch, by hydrolysis of microcrystalline cellulose with sulphuric acid and by oxidation with ammonium persulfate. The nanocomposites were made by adding nanocrystalline cellulose with varying compositions into PLA. A solvent casting method was used to produce a nanocomposite film with 5% v/v triacetin as a coupling agent. Both methods produced crystalline celluloses within the micro and nano range with mean particle size at 99.5 nm and 157.9 nm for the sulphuric acid hydrolysis and the ammonium persulfate oxidation method, respectively. The utilization of NCC as PLA composite filler increased the percentage of elongation at break with a highest percentage 19.02% for addition of 1% NCC filler. However, higher compositions of cellulosic filler resulted in a decreasing trend of tensile strength and elongation at break. Higher content of NCC filler in the PLA matrix increased the nanocomposite's water vapor permeability

    A Scaling-up Synthesis From Laboratory Scale to Pilot Scale and to Near Commercial Scale for Paste-Glue Production

    Get PDF
    This paper concerns on developing a synthesis method of paste-glue production for gummed tape using a corn-based starch as an alternative feedstock from laboratory-scale to pilot-scale and to near commercial scale. Basically, two methods of synthesis were developed to produce paste-glue in laboratory scale. Based on the two methods, we then scale-up the earlier laboratory scale data to pilot-scale and near commercial-scale for developing a large scale process production of paste-glue. Scaling up production from 1,000 ml reactor to 500 L pilot-scale reactor and 1,500 L near commercial scale reactor, we monitored pathway of temperature increase during reaction as well as adjustment of operating condition conducted for laboratory experimental data in order to produce a good quality of paste-glue. Some scaling up parameters have been found as well as critical parameters for a good product quality such as viscosity and ceiling temperature of the reaction which are very crucial in order to give optimum operating condition. We have selected synthesis method of paste-glue production and found the range of the parameters in order to produce a very good quality of paste-glue in pilot scale and near commercial scale

    Molecular Weight and Structural Properties of Biodegradable PLA Synthesized with Different Catalysts by Direct Melt Polycondensation

    Get PDF
    Production of biodegradable polylactic acid (PLA) from biomassbased lactic acid is widely studied for substituting petro-based plastics or polymers. This study investigated PLA production from commercial lactic acid in a batch reactor by applying a direct melt polycondensation method with two kinds of catalyst, γ-aluminium(III) oxide (γ-Al2O3) or zinc oxide (ZnO), in reduced pressure. The molecular weight of the synthesized PLA was determined by capillary viscometry and its structural properties were analyzed by functional group analysis using FT-IR. The yields of polymer production with respect to the theoretical conversion were 47% for γ-Al2O3 and 35% for ZnO. However, the PLA from ZnO had a higher molecular weight (150,600 g/mol) than that from γ-Al2O3 (81,400 g/mol). The IR spectra of the synthesized PLA from both catalysts using polycondensation show the same behavior of absorption peaks at wave numbers from 4,500 cm-1 to 500 cm-1, whereas the PLA produced by two other polymerization methods – polycondensation and ring opening polymerization –showed a significant difference in % transmittance intensity pattern as well as peak area absorption at a wave number of 3,500 cm-1 as –OH vibration peak and at 1,750 cm-1 as –C=O carbonyl vibrational peak

    Production of Methyl Laurate From Coconut Cream Through Fractionation of Methyl Ester

    Get PDF
    This paper concerns the production of methyl laurate from coconut cream through fractionation of methyl esters. Coconut oil was produced by wet processing of coconut cream. The esters were prepared by reacting coconut oil and methanol using homogeneous catalyst KOH in a batch reactor, followed by fractionation of fatty acid methyl esters (FAME) at various reduced pressures applying differential batch vacuum distillation. Experimental data were compared with simulation of a batch distillation employing the simple Raoult's model and modified Raoult's model of phase equilibria. Activity coefficients (γi) were determined by optimization to refine the models. The modified Rault's model with activity coefficients gave better agreement with the experimental data, giving the value of γi between 0,56-0,73. For a given boiling temperature, lower operating pressure produced higher purity of C10 and C12 FAME for respective distillates

    KAJIAN KOMPOSISI KIMIA, NILAI NUTRISI, DAN ETNOFARMAKOLOGIS TANAMAN GENUS KENARI

    Get PDF
    One species of canarium genus is Canarium indicum L which is an original plant from Indonesia. Utilization of some canarium nut species which spread around the world had been recognized, such as a source of nutritious food as well as its potency as raw material of medicine based on evidence-based scientific. In traditional medicine, was reported if canarium nut had been used for diabetes mellitus treatment, angina, hepatoprotective, anti-inflammatory, antirheumatic, expectorant, etc. This article aims to review the chemical composition, nutrient values, and potency of canarium nut as the raw material of medicine. Scientific data were obtained from online search results. From the searching was found that at least eight species of canarium nut reported which is related to chemical composition and its nutrition which also provide ethnopharmacological benefits. Overall results, all identified canarium nut species have a favorable chemical composition and nutritional values that can be utilized as functional, nutritional and medicinal food. Therefore, the result of this study also indicates if the canarium nut from Indonesia, C. indicum L., has not been thoroughly studied. That indicates by the lack of scientific paper which presented about C. indicum from Indonesia

    Studi Kondisi Operasi dalam Pemisahan Asam Laktat dari Produk Konversi Katalitik Tandan Kosong Sawit Melalui Esterifikasi-Hidrolisis

    Get PDF
    Lactic acid is a platform chemical that is usually used to form various chemical products. Nowadays, the need of lactic acid is increasingly high especially for bio-based chemical as a substitute for petroleum-based one. Catalytic chemical conversion is seemingly potential to substitute the bioconversion pathway. This research aims to determine the best operating condition for separating lactic acid from its mixture (the catalytic conversion product of oil palm empty fruit bunch) by esterification-hydrolysis in order to produce the highest yield and purity. The esterification of the mixture was carried out by using n-butanol as a solvent and wet Amberlyst-15 as a catalyst. The esterification process was conducted by reacting n-butanol and lactic acid for 6 hours in a batch reactor. Hydrolysis was then followed by reacting organic phase as an esterification product and water in batch reactor system for 4 hours. The result showed that the higher reactant volume ratio, temperature, and catalyst concentration were used, the higher yield of both esterification and hydrolysis products would be. The highest esterification yield of 98.64%-w/w was achieved when the temperature was at 90oC, with a reactant volume ratio of 4, and the catalyst concentration of 2.5%-w/w. Moreover, the experiment results showed that the highest hydrolysis yield of 98.64%-w/w was achieved by the temperature of 90 oC, the reactant volume ratio of 20, and the catalyst concentration of 2.5%-w/w. It was revealed that the most significant variable for esterification was reactant volume ratio while both reactant volume ratio and temperature become the prominent variables for hydrolysis counterpart. Additionally, another modified method of separation was conducted by applying reactive distillation. This modified process increased the hydrolysis yield up to 82.34%-w/w by using pure butyl lactate as feed while the usage of the catalytic butyl lactate as feed could produce lactic acid with the yield of 74.01%-w/w. A B S T R A KAsam laktat adalah bahan kimia antara yang bermanfaat untuk pembentukan berbagai macam produk kimia. Permintaan asam laktat dewasa ini sangat tinggi terutama sebagai bahan kimia berbasis alam yang digunakan sebagai substitusi untuk penggunaan bahan kimia tak terbarukan. Terdapat banyak alternatif proses yang sudah dilakukan oleh peneliti untuk menemukan metode alternatif yang efektif sebagai pengganti proses fermentasi dan konversi katalitik merupakan proses yang berpotensi untuk diaplikasikan. Penelitian ini bertujuan untuk menentukan kondisi operasi yang menghasilkan perolehan asam laktat tinggi pada reaksi esterifikasi-hidrolisis asam laktat dari produk reaksi katalitik tandan kosong sawit menggunakan n-butanol p.a., dan katalis Amberlyst-15 basah. Esterifikasi dilakukan dengan mereaksikan n-butanol dan umpan hasil konversi katalitik tandan kosong sawit selama 6 jam. Hidrolisis dilakukan dengan mereaksikan air dan fase organik esterifikasi selama 4 jam. Hasil menunjukkan semakin tinggi temperatur reaksi, rasio volume reaktan, dan konsentrasi katalis, semakin tinggi perolehan asam laktat esterifikasi dan hidrolisis yang dihasilkan. Perolehan butil laktat tertinggi pada reaksi esterifikasi diperoleh sebesar 98,64%-b/b pada kondisi 90 oC, rasio volume 4 dan konsentrasi katalis 2,5%-b/b. Perolehan asam laktat tertinggi pada reaksi hidrolisis diperoleh sebesar 67,97%-b/b pada kondisi 90 oC, rasio volume 20 dan konsentrasi katalis 2,5%-b/b. Variabel signifikan pada esterifikasi adalah rasio volume reaktan, sedangkan pada hidrolisis adalah rasio volume reaktan dan temperatur. Penggunaan distilasi reaktif pada hidrolisis mampu meningkatkan perolehan asam laktat hingga 82,34%-b/b untuk butil laktat murni sebagai umpan dan 74,01%-b/b untuk butil laktat katalitik sebagai umpan
    corecore