47 research outputs found

    Assessing New Methods of Integrated Pest Management for Apple Orchards in the Midwest

    Get PDF
    Producing apples in the Midwest requires intensive, chemically based pest management systems to bring high-quality, fresh market apples to consumers. A combination of rising costs, pest resistance, and new legislation has caused existing systems of apple pest management to become ineffective or to fall out of favor with growers. Because of this, new methods of pest control were developed to combat the ever present problems in apple production. These new methods must meet a number of criteria: sufficient pest control must be achieved, the innovative tactics must be safer for applicators, the environment, and consumers, and must also be economically feasible or they are not likely to be adopted by growers

    New Methods of Integrated Pest Management for Apple Orchards in the Midwest

    Get PDF
    Apple production in the Midwest requires very intensive, chemically-based pest management systems in order to bring quality, fresh market apples to consumers. Current systems of apple pest management have become ineffective and have fallen out of favor with growers, due to a combination of rising costs, pest resistance, and government regulation. New pest control methods must meet several criteria in order to be adopted by growers,such as adequate pest control, applicator safety, minimal environmental impact, and above all, economic viability. In this study, four apple pest management systems were compared for control of codling moth, apple scab, and sooty blotch and flyspeck (SBFS)

    Evaluating Effectiveness of a Sooty Blotch and Flyspeck Warning System at Three Commercial Orchards in Central Iowa

    Get PDF
    The Brown/Sutton/Hartman sooty blotch flyspeck (SBFS) warning system, developed in North Carolina and modified in Kentucky, extends the period between first-cover and second-cover fungicide sprays until a total of 175 hours of wetness has been measured in the orchard canopy. After second cover, sprays are made at two-week intervals until harvest

    Assessing New Methods of Integrated Pest Management for Apple Orchards in the Midwest

    Get PDF
    Producing apples in the Midwest requires intensive, chemically based pest management systems in order to bring high-quality, fresh market apples to consumers. A combination of rising costs, pest resistance, and new legislation has caused existing systems of apple pest management to become ineffective or to fall out of favor with growers. Because of this, new methods of pest control were developed to combat the ever present problems in apple production. These new methods must meet a number of criteria: sufficient pest control must be achieved; the innovative tactics must be safer for applicators, the environment, and consumers; and also must be economically feasible or they are not likely to be adopted by growers

    Rigid-rod push–pull naphthalenediimide photosystems

    Get PDF
    Design, synthesis and evaluation of advanced rigid-rod π-stack photosystems with asymmetric scaffolds are reported. The influence of push–pull rods on self-organization, photoinduced charge separation and photosynthetic activity is investigated and turns out to be surprisingly small overall

    Scorpion Biodiversity and Interslope Divergence at “Evolution Canyon”, Lower Nahal Oren Microsite, Mt. Carmel, Israel

    Get PDF
    BACKGROUND: Local natural laboratories, designated by us as the "Evolution Canyon" model, are excellent tools to study regional and global ecological dynamics across life. They present abiotic and biotic contrasts locally, permitting the pursuit of observations and experiments across diverse taxa sharing sharp microecological subdivisions. Higher solar radiation received by the "African savannah-like" south-facing slopes (AS) in canyons north of the equator than by the opposite "European maquis-like" north-facing slopes (ES) is associated with higher abiotic stress. Scorpions are a suitable taxon to study interslope biodiversity differences, associated with the differences in abiotic factors (climate, drought), due to their ability to adapt to dry environments. METHODOLOGY/PRINCIPAL FINDINGS: Scorpions were studied by the turning stone method and by UV light methods. The pattern observed in scorpions was contrasted with similar patterns in several other taxa at the same place. As expected, the AS proved to be significantly more speciose regarding scorpions, paralleling the interslope patterns in taxa such as lizards and snakes, butterflies (Rhopalocera), beetles (families Tenebrionidae, Dermestidae, Chrysomelidae), and grasshoppers (Orthoptera). CONCLUSIONS/SIGNIFICANCE: Our results support an earlier conclusion stating that the homogenizing effects of migration and stochasticity are not able to eliminate the interslope intra- and interspecific differences in biodiversity despite an interslope distance of only 100 m at the "EC" valley bottom. In our opinion, the interslope microclimate selection, driven mainly by differences in insolance, could be the primary factor responsible for the observed interslope pattern

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    DYX1C1 is required for axonemal dynein assembly and ciliary motility

    Full text link
    DYX1C1 has been associated with dyslexia and neuronal migration in the developing neocortex. Unexpectedly, we found that deleting exons 2–4 of Dyx1c1 in mice caused a phenotype resembling primary ciliary dyskinesia (PCD), a disorder characterized by chronic airway disease, laterality defects and male infertility. This phenotype was confirmed independently in mice with a Dyx1c1 c.T2A start-codon mutation recovered from an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. Morpholinos targeting dyx1c1 in zebrafish also caused laterality and ciliary motility defects. In humans, we identified recessive loss-of-function DYX1C1 mutations in 12 individuals with PCD. Ultrastructural and immunofluorescence analyses of DYX1C1-mutant motile cilia in mice and humans showed disruptions of outer and inner dynein arms (ODAs and IDAs, respectively). DYX1C1 localizes to the cytoplasm of respiratory epithelial cells, its interactome is enriched for molecular chaperones, and it interacts with the cytoplasmic ODA and IDA assembly factor DNAAF2 (KTU). Thus, we propose that DYX1C1 is a newly identified dynein axonemal assembly factor (DNAAF4)
    corecore