444 research outputs found

    COPS—a novel workbench for explorations in fold space

    Get PDF
    The COPS (Classification Of Protein Structures) web server provides access to the complete repertoire of known protein structures and protein structural domains. The COPS classification encodes pairwise structural similarities as quantified metric relationships. The resulting metrical structure is mapped to a hierarchical tree, which is largely equivalent to the structure of a file browser. Exploiting this relationship we implemented the Fold Space Navigator, a tool that makes navigation in fold space as convenient as browsing through a file system. Moreover, pairwise structural similarities among the domains can be visualized and inspected instantaneously. COPS is updated weekly and stays concurrent with the PDB repository. The server also exposes the COPS classification pipeline. Newly determined structures uploaded to the server are chopped into domains, the locations of the new domains in the classification tree are determined, and their neighborhood can be immediately explored through the Fold Space Navigator. The COPS web server is accessible at http://cops.services.came.sbg.ac.at/

    Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized

    Get PDF
    Understanding protein structure is of crucial importance in science, medicine and biotechnology. For about two decades, knowledge based potentials based on pairwise distances -- so-called "potentials of mean force" (PMFs) -- have been center stage in the prediction and design of protein structure and the simulation of protein folding. However, the validity, scope and limitations of these potentials are still vigorously debated and disputed, and the optimal choice of the reference state -- a necessary component of these potentials -- is an unsolved problem. PMFs are loosely justified by analogy to the reversible work theorem in statistical physics, or by a statistical argument based on a likelihood function. Both justifications are insightful but leave many questions unanswered. Here, we show for the first time that PMFs can be seen as approximations to quantities that do have a rigorous probabilistic justification: they naturally arise when probability distributions over different features of proteins need to be combined. We call these quantities reference ratio distributions deriving from the application of the reference ratio method. This new view is not only of theoretical relevance, but leads to many insights that are of direct practical use: the reference state is uniquely defined and does not require external physical insights; the approach can be generalized beyond pairwise distances to arbitrary features of protein structure; and it becomes clear for which purposes the use of these quantities is justified. We illustrate these insights with two applications, involving the radius of gyration and hydrogen bonding. In the latter case, we also show how the reference ratio method can be iteratively applied to sculpt an energy funnel. Our results considerably increase the understanding and scope of energy functions derived from known biomolecular structures

    Deriving amino acid contact potentials from their frequencies of occurence in proteins: a lattice model study

    Full text link
    The possibility of deriving the contact potentials between amino acids from their frequencies of occurence in proteins is discussed in evolutionary terms. This approach allows the use of traditional thermodynamics to describe such frequencies and, consequently, to develop a strategy to include in the calculations correlations due to the spatial proximity of the amino acids and to their overall tendency of being conserved in proteins. Making use of a lattice model to describe protein chains and defining a "true" potential, we test these strategies by selecting a database of folding model sequences, deriving the contact potentials from such sequences and comparing them with the "true" potential. Taking into account correlations allows for a markedly better prediction of the interaction potentials

    The crust in the pamir: Insights from receiver functions

    Get PDF
    The Cenozoic convergence between India and Asia has created Earth's thickest crust in the Pamir‐Tibet Plateau by extreme crustal shortening. Here we study the crustal structure of the Pamir and western Tian Shan, the adjacent margins of the Tajik, Tarim, and Ferghana Basins, and the Hindu Kush, using data collected by temporary seismic experiments. We derive, compare, and combine independent observations from P and S receiver functions. The obtained Moho depth varies from ~40 km below the basins to a double‐normal thickness of 65–75 km underneath the Pamir and Hindu Kush. A Moho doublet—with the deeper interface down to a depth of ~90 km—coincides with the arc of intermediate‐depth seismicity underneath the Pamir, where Asian continental lower crust delaminates and rolls back. The crust beneath most of the Central and South Pamir has a low Vp/Vs ratio (<1.70), suggesting a dominantly felsic composition, probably a result of delamination/foundering of the mafic rocks of the lower crust. Beneath the Cenozoic gneiss domes of the Central and South Pamir, which represent extensional core complexes, the Vp/Vs ratios are moderate to high (~1.75), consistent with the previously observed, midcrustal low‐velocity zones, implying the presence of crustal partial melts. Even higher crustal average Vp/Vs ratios up to 1.90 are found in the sedimentary basins and along the Main Pamir Thrust. The ratios along the latter—the active thrust front of the Pamir—may reflect fluid accumulations within a strongly fractured fault system

    Global Optimization by Energy Landscape Paving

    Get PDF
    We introduce a novel heuristic global optimization method, energy landscape paving (ELP), which combines core ideas from energy surface deformation and tabu search. In appropriate limits, ELP reduces to existing techniques. The approach is very general and flexible and is illustrated here on two protein folding problems. For these examples, the technique gives faster convergence to the global minimum than previous approaches.Comment: to appear in Phys. Rev. Lett. (2002

    Partition Function Zeros and Finite Size Scaling of Helix-Coil Transitions in a Polypeptide

    Full text link
    We report on multicanonical simulations of the helix-coil transition of a polypeptide. The nature of this transition was studied by calculating partition function zeros and the finite-size scaling of various quantities. Estimates for critical exponents are presented.Comment: RevTex, 4 eps-files; to appear in Phys. Rev. Le

    Generalized-ensemble Monte carlo method for systems with rough energy landscape

    Full text link
    We present a novel Monte Carlo algorithm which enhances equilibrization of low-temperature simulations and allows sampling of configurations over a large range of energies. The method is based on a non-Boltzmann probability weight factor and is another version of the so-called generalized-ensemble techniques. The effectiveness of the new approach is demonstrated for the system of a small peptide, an example of the frustrated system with a rugged energy landscape.Comment: Latex; ps-files include

    Analysis of RNA Binding by the Dengue Virus NS5 RNA Capping Enzyme

    Get PDF
    Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5′ end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the KD for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5′ phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM). Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5′ di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented

    From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions

    Get PDF
    ©2009 Gao, Skolnick. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pcbi.1000341DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Ca deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein

    Metropolis simulations of Met-Enkephalin with solvent-accessible area parameterizations

    Get PDF
    We investigate the solvent-accessible area method by means of Metropolis simulations of the brain peptide Met-Enkephalin at 300K K. For the energy function ECEPP/2 nine atomic solvation parameter (ASP) sets are studied. The simulations are compared with one another, with simulations with a distance dependent electrostatic permittivity ϵ(r)\epsilon (r), and with vacuum simulations (ϵ=2\epsilon =2). Parallel tempering and the biased Metropolis techniques RM1_1 are employed and their performance is evaluated. The measured observables include energy and dihedral probability densities (pds), integrated autocorrelation times, and acceptance rates. Two of the ASP sets turn out to be unsuitable for these simulations. For all other systems selected configurations are minimized in search of the global energy minima, which are found for the vacuum and the ϵ(r)\epsilon(r) system, but for none of the ASP models. Other observables show a remarkable dependence on the ASPs. In particular, we find three ASP sets for which the autocorrelations at 300 K are considerably smaller than for vacuum simulations.Comment: 10 pages and 8 figure
    corecore