123 research outputs found

    Impact of using different ozone cross sections on ozone profile retrievals from Global Ozone Monitoring Experiment (GOME) ultraviolet measurements

    Get PDF
    We investigate the effect of using three different cross section data sets on ozone profile retrievals from Global Ozone Monitoring Experiment (GOME) ultraviolet measurements (289–307 nm, 326–337 nm). These include Bass-Paur, Brion, and GOME flight model cross sections (references below). Using different cross sections can significantly affect the retrievals, by up to 12 Dobson Units (DU, 1 DU=2.69×10<sup>16</sup> molecules cm<sup>−2</sup>) in total column ozone, up to 10 DU in tropospheric column ozone, and up to 100% in retrieved ozone values for individual atmospheric layers. Compared to using the Bass-Paur and GOME flight model cross sections, using the Brion cross sections not only reduces fitting residuals by 15–60% in the Huggins bands, but also improves retrievals, especially in the troposphere, as seen from validation against ozonesonde measurements. Therefore, we recommend using the Brion cross section for ozone profile retrievals from ultraviolet measurements. The total column ozone retrieved using the GOME flight model cross sections is systematically lower, by 7–10 DU, than that retrieved using the Brion and Bass-Paur cross sections and is also systematically lower than Total Ozone Mapping Spectrometer (TOMS) observations. This study demonstrates the need for improved ozone cross section measurements in the ultraviolet to improve profile retrievals of this key atmospheric constituent

    Water Vapour Variability in the High-Latitude Upper Troposphere- Part 2: Impact of Volcanic Eruptions

    Get PDF
    The impact of volcanic eruptions on water vapour in the high-latitude upper troposphere is studied using deseasonalized time series based on observations by the Atmospheric Chemistry Experiment (ACE) water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS). The two eruptions with the greatest impact on the high-latitude upper troposphere during the time frame of this satellitebased remote sensing mission are chosen. The Puyehue-Cordón Caulle volcanic eruption in June 2011 was the most explosive in the past 24 years and is shown to be able to account for the observed (50 ± 12)% increase in water vapour in the southern high-latitude upper troposphere in July 2011 after a minor adjustment for the simultaneous influence of the Antarctic oscillation. Eyjafjallajökull erupted in the spring of 2010, increasing water vapour in the upper troposphere at northern high latitudes significantly for a period of similar to 1 month. These findings imply that extratropical volcanic eruptions in windy environments can lead to significant perturbations to high-latitude upper tropospheric humidity mostly due to entrainment of lower tropospheric moisture by windblown plumes. The Puyehue-Cordón Caulle eruption must be taken into account to properly determine the magnitude of the trend in southern high-latitude upper tropospheric water vapour over the last decade

    Trend and variability in ozone in the tropical lower stratosphere over 2.5 solar cycles observed by SAGE II and OSIRIS

    Get PDF
    We have extended the satellite-based ozone anomaly time series to the present (December 2012) by merging SAGE II (Stratospheric Aerosol and Gas Experiment II) with OSIRIS (Optical Spectrograph and Infrared Imager System) and correcting for the small bias (~0.5%) between them, determined using their temporal overlap of 4 years. Analysis of the merged data set (1984–2012) shows a statistically significant negative trend at all altitudes in the 18–25 km range, including a trend of (−4.6 ± 2.6)% decade<sup>−1</sup> at 19.5 km where the relative standard error is a minimum. We are also able to replicate previously reported decadal trends in the tropical lower-stratospheric ozone anomaly based on SAGE II observations. Uncertainties are smaller on the merged trend than the SAGE II trend at all altitudes. Underlying strong fluctuations in ozone anomaly due to El Niño–Southern Oscillation (ENSO), the altitude-dependent quasi-biennial oscillation, and tropopause pressure need to be taken into account to reduce trend uncertainties and, in the case of ENSO, to accurately determine the linear trend just above the tropopause. We also compare the observed ozone trend with a calculated trend that uses information on tropical upwelling and its temporal trend from model simulations, tropopause pressure trend information derived from reanalysis data, and vertical profiles from SAGE II and OSIRIS to determine the vertical gradient of ozone and its trend. We show that the observed trend agrees with the calculated trend and that the magnitude of the calculated trend is dominated by increased tropical upwelling, with minor but increasing contribution from the vertical ozone gradient trend as the tropical tropopause is approached. Improvements are suggested for future regression modelling efforts which could reduce trend uncertainties and biases in trend magnitudes, thereby allowing accurate trend detection to extend below 18 km

    Retrieval of Carbon Dioxide Vertical Profiles From Solar Occultation Observations and Associated Error Budgets for ACE-FTS and CASS-FTS

    Get PDF
    An algorithm is developed to retrieve the vertical profile of carbon dioxide in the 5 to 25 km altitude range using mid-infrared solar occultation spectra from the main instrument of the ACE (Atmospheric Chemistry Experiment) mission, namely the Fourier transform spectrometer (FTS). The main challenge is to find an atmospheric phenomenon which can be used for accurate tangent height determination in the lower atmosphere, where the tangent heights (THs) calculated from geometric and timing information are not of sufficient accuracy. Error budgets for the retrieval of CO2 from ACE-FTS and the FTS on a potential follow-on mission named CASS (Chemical and Aerosol Sounding Satellite) are calculated and contrasted. Retrieved THs have typical biases of 60m relative to those retrieved using the ACE version 3. x software after revisiting the temperature dependence of the N2 CIA (collision-induced absorption) laboratory measurements and accounting for sulfate aerosol extinction. After correcting for the known residual high bias of ACE version 3. x THs expected from CO2 spectroscopic/isotopic inconsistencies, the remaining bias for tangent heights determined with the N2 CIA is -20 m. CO2 in the 5-13 km range in the 2009-2011 time frame is validated against aircraft measurements from CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container), CONTRAIL (Comprehensive Observation Network for Trace gases by Airline), and HIPPO HIAPER Pole-to-Pole Observations), yielding typical biases of -1.7 ppm in the 5-13 km range. The standard error of these biases in this vertical range is 0.4 ppm. The multiyear ACE-FTS data set is valuable in determining the seasonal variation of the latitudinal gradient which arises from the strong seasonal cycle in the Northern Hemisphere troposphere. The annual growth of CO2 in this time frame is determined to be 2.6±0.4 ppm year-1, in agreement with the currently accepted global growth rate based on ground-based measurements

    Upper Tropospheric Water Vapour Variability at High Latitudes- Part 1: Influence of the Annular Modes

    Get PDF
    Seasonal and monthly zonal medians of water vapour in the upper troposphere and lower stratosphere (UTLS) are calculated for both Atmospheric Chemistry Experiment (ACE) instruments for the northern and southern high-latitude regions (60-90° N and 60-90°S). Chosen for the purpose of observing high-latitude processes, the ACE orbit provides sampling of both regions in 8 of 12 months of the year, with coverage in all seasons. The ACE water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS) are currently the only satellite instruments that can probe from the lower stratosphere down to the mid-troposphere to study the vertical profile of the response of UTLS water vapour to the annular modes. The Arctic oscillation (AO), also known as the northern annular mode (NAM), explains 64 % (r = -0.80) of the monthly variability in water vapour at northern high latitudes observed by ACE-MAESTRO between 5 and 7 km using only winter months (January to March, 2004-2013). Using a seasonal time step and all seasons, 45% of the variability is explained by the AO at 6.5 ± -0.5 km, similar to the 46 % value obtained for southern high latitudes at 7.5 ± 0.5 km explained by the Antarctic oscillation or southern annular mode (SAM). A large negative AO event in March 2013 produced the largest relative water vapour anomaly at 5.5-km (+70 %) over the ACE record. A similarly large event in the 2010 boreal winter, which was the largest negative AO event in the record (1950-2015), led to \u3e 50 % increases in water vapour observed by MAESTRO and ACE-FTS at 7.5 km

    New Measurements of the Motion of the Zodiacal Dust

    Full text link
    Using the Wisconsin H-Alpha Mapper (WHAM), we have measured at high spectral resolution and high signal-to-noise the profile of the scattered solar Mg I 5184 absorption line in the zodiacal light. The observations were carried out toward 49 directions that sampled the ecliptic equator from solar elongations of 48\dg (evening sky) to 334\dg (morning sky) plus observations near +47\dg and +90\dg ecliptic latitude. The spectra show a clear prograde kinematic signature that is inconsistent with dust confined to the ecliptic plane and in circular orbits influenced only by the sun's gravity. In particular, the broadened widths of the profiles, together with large amplitude variations in the centroid velocity with elongation angle, indicate that a significant population of dust is on eccentric orbits. In addition, the wide, flat-bottomed line profile toward the ecliptic pole indicates a broad distribution of orbital inclinations extending up to about 30\dg - 40\dg with respect to the ecliptic plane. The absence of pronounced asymmetries in the shape of the profiles limits the retrograde population to less than 10% of the prograde population and also places constraints on the scattering phase function of the particles. These results do not show the radial outflow or evening--morning velocity amplitude asymmetry reported in some earlier investigations. The reduction of the spectra included the discovery and removal of extremely faint, unidentified terrestrial emission lines that contaminate and distort the underlying Mg I profile. This atmospheric emission is too weak to have been seen in earlier, lower signal-to-noise observations, but it probably affected the line centroid measurements of previous investigations.Comment: 24 pages, 8 figures, 1 table, to appear in ApJ v612; figures appear low-res only on scree

    A Global Ozone Climatology from Ozone Soundings via Trajectory Mapping: A Stratospheric Perspective

    Get PDF
    This study explores a domain-filling trajectory approach to generate a global ozone climatology from sparse ozonesonde data. Global ozone soundings of 51,898 profiles at 116 stations over 44 years (1965-2008) are used, from which forward and backward trajectories are performed for 4 days, driven by a set of meteorological reanalysis data. Ozone mixing ratios of each sounding from the surface to 26 km altitude are assigned to the entire path along the trajectory. The resulting global ozone climatology is archived monthly for five decades from the 1960s to the 2000s with grids of 5 degree 5 degree 1 km (latitude, longitude, and altitude). It is also archived yearly from 1965 to 2008. This climatology is validated at 20 ozonesonde stations by comparing the actual ozone sounding profile with that found through the trajectories, using the ozone soundings at all the stations except one being tested. The two sets of profiles are in good agreement, both individually with correlation coefficients between 0.975 and 0.998 and root mean square (RMS) differences of 87 to 482 ppbv, and overall with a correlation coefficient of 0.991 and an RMS of 224 ppbv. The ozone climatology is also compared with two sets of satellite data, from the Satellite Aerosol and Gas Experiment (SAGE) and the Optical Spectrography and InfraRed Imager System (OSIRIS). Overall, the ozone climatology compares well with SAGE and OSIRIS data by both seasonal and zonal means. The mean difference is generally under 20 above 15 km. The comparison is better in the northern hemisphere, where there are more ozonesonde stations, than in the southern hemisphere; it is also better in the middle and high latitudes than in the tropics, where assimilated winds are imperfect in some regions. This ozone climatology can capture known features in the stratosphere, as well as seasonal and decadal variations of these features. Furthermore, it provides a wealth of detail about longitudinal variations in the stratosphere such as the spring ozone maximum over the Canadian Arctic. It also covers higher latitudes than current satellite data. The climatology shows clearly the depletion of ozone from the 1970s to the mid 1990s and ozone recovery in the 2000s. When this climatology is used as the upper boundary condition in an Environment Canada operational chemical forecast model, the forecast is improved in the vicinity of the upper tropospherelower stratosphere region. As this ozone climatology is neither dependent on a priori data or photochemical modeling, it provides independent information and insight that can supplement satellite data and model simulations and enhance our understanding of stratospheric ozone

    Transport of trace gases via eddy shedding from the Asian summer monsoon anticyclone and associated impacts on ozone heating rates

    Get PDF
    The highly vibrant Asian summer monsoon (ASM) anticyclone plays an important role in efficient transport of Asian tropospheric air masses to the extratropical upper troposphere and lower stratosphere (UTLS). In this paper, we demonstrate long-range transport of Asian trace gases via eddy-shedding events using MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) satellite observations, ERA-Interim reanalysis data and the ECHAM5–HAMMOZ global chemistry-climate model. Model simulations and observations consistently show that Asian boundary layer trace gases are lifted to UTLS altitudes in the monsoon anticyclone and are further transported horizontally eastward and westward by eddies detached from the anticyclone. We present an event of eddy shedding during 1–8 July 2003 and discuss a 1995–2016 climatology of eddy-shedding events. Our analysis indicates that eddies detached from the anticyclone contribute to the transport of Asian trace gases away from the Asian region to the western Pacific (20–30°N, 120–150°E) and western Africa (20–30°N, 0–30°E). Over the last two decades, the estimated frequency of occurrence of eddy-shedding events is  ∼ 68% towards western Africa and  ∼ 25% towards the western Pacific. Model sensitivity experiments considering a 10% reduction in Asian emissions of non-methane volatile organic compounds (NMVOCs) and nitrogen oxides (NOx) were performed with ECHAM5–HAMMOZ to understand the impact of Asian emissions on the UTLS. The model simulations show that transport of Asian emissions due to eddy shedding significantly affects the chemical composition of the upper troposphere ( ∼ 100–400hPa) and lower stratosphere ( ∼ 100–80hPa) over western Africa and the western Pacific. The 10% reduction of NMVOCs and NOx Asian emissions leads to decreases in peroxyacetyl nitrate (PAN) (2%–10% near 200–80hPa), ozone (1%–4.5% near  ∼ 150hPa) and ozone heating rates (0.001–0.004Kday−1 near 300–150hPa) in the upper troposphere over western Africa and the western Pacific

    Elevated aerosol layer over South Asia worsens the Indian droughts.

    Get PDF
    Droughts have become more severe and recurrent over the Indian sub-continent during the second half of the twentieth century, leading to more severe hydro-climatic and socio-economic impacts over one of the most densely populated parts of the world. So far, droughts have mostly been connected to circulation changes concomitant with the abnormal warming over the Pacific Ocean, prevalently known as "El Niño". Here, exploiting observational data sets and a series of dedicated sensitivity experiments, we show that the severity of droughts during El Niño is amplified (17%) by changes in aerosols. The model experiments simulate the transport of boundary layer aerosols from South Asian countries to higher altitudes (12-18 km) where they form the Asian Tropopause Aerosol Layer (ATAL) (~ 60-120°E, 20-40°N). During El Niño, the anomalous overturning circulation from the East Asian region further enriches the thickness of aerosol layers in the ATAL over the northern part of South Asia. The anomalous aerosol loading in the ATAL reduces insolation over the monsoon region, thereby exacerbating the severity of drought by further weakening the monsoon circulation. Future increases in industrial emissions from both East and South Asia will lead to a wider and thicker elevated aerosol layer in the upper troposphere, potentially amplifying the severity of droughts
    • …
    corecore