167 research outputs found

    Noncontact detection and analysis of respiratory function using microwave Doppler Radar

    Full text link
    Real-time respiratory measurement with Doppler Radar has an important advantage in the monitoring of certain conditions such as sleep apnoea, sudden infant death syndrome (SIDS), and many other general clinical uses requiring fast nonwearable and non-contact measurement of the respiratory function. In this paper, we demonstrate the feasibility of using Doppler Radar in measuring the basic respiratory frequencies (via fast Fourier transform) for four different types of breathing scenarios: normal breathing, rapid breathing, slow inhalation-fast exhalation, and fast inhalation-slow exhalation conducted in a laboratory environment. A high correlation factor was achieved between the Doppler Radar-based measurements and the conventional measurement device, a respiration strap. We also extended this work from basic signal acquisition to extracting detailed features of breathing function (I: E ratio). This facilitated additional insights into breathing activity and is likely to trigger a number of new applications in respiratory medicine

    Outward FDI and institutional factors: Malaysian experience / Jen-Eem Chen ... [et al.]

    Get PDF
    This paper aims to investigate the role of home country institution in affecting outward FDI from Malaysia using data spans from 1980 to 2012. The model specification is examined in autoregressive distributed lag (ARDL) bounds testing framework. The empirical evidence reveals that GDP, exchange rate, openness to trade, and corporate tax rate are the key drivers of outward FDI from Malaysia. This portrays that internationalization strategy of firms is not only relied on home macroeconomic environment, but also home institution. More importantly, corporate tax rate, as one of the institution factors, is positively related to outward FDI which signifies that high tax rate would prompt local firms to engage in investment abroad as a sign of escape response. This reflects that international expansion appears to be exit strategy from home country instead of entry strategy into foreign markets. The findings have some important implications on internationalization strategy of firms

    A mobile cloud computing framework integrating multilevel encoding for performance monitoring in telerehabilitation

    Full text link
    Recent years have witnessed a surge in telerehabilitation and remote healthcare systems blessed by the emerging low-cost wearable devices to monitor biological and biokinematic aspects of human beings. Although such telerehabilitation systems utilise cloud computing features and provide automatic biofeedback and performance evaluation, there are demands for overall optimisation to enable these systems to operate with low battery consumption and low computational power and even with weak or no network connections. This paper proposes a novel multilevel data encoding scheme satisfying these requirements in mobile cloud computing applications, particularly in the field of telerehabilitation. We introduce architecture for telerehabilitation platform utilising the proposed encoding scheme integrated with various types of sensors. The platform is usable not only for patients to experience telerehabilitation services but also for therapists to acquire essential support from analysis oriented decision support system (AODSS) for more thorough analysis and making further decisions on treatment

    Investigate the capability of INAA absolute method to determine the concentrations of 238U and 232Th in rock samples

    Get PDF
    This work aimed to study the capability of INAA absolute method in determining the elemental concentration of 238U and 232Th in the rock samples. The INAA absolute method was implemented in PUSPATI TRIGA Mark II research reactor, Malaysian Nuclear Agency (NM). The accuracy of INAA absolute method was performed by analyzing the IAEA certified reference material (CRM) Soil-7. The analytical results showed the deviations between experimental and certified values were mostly less than 10 % with Z-score in most cases less than 1. In general, the results of analysed CRM Soil-7 show a good agreement between certified and experimental results which mean that the INAA absolute method can be used accurately for elemental analysis of uranium and thorium in various types of samples. The concentration of 238U and 232Th ranged from 1.77 to 24.25 and 0.88 to 95.50 ppm respectively. The highest value of 238U and 232Th was recorded for granite rock sample G17 of 238U and sample G9 of 232Th, whereas the lower value was 1.77 ppm of 238U recorded in sandstone rock and 0.88 ppm of 232Th for gabbro. Moreover, a comparison of the 238U and 232Th results obtained by the INAA absolute method shows an acceptable level of consistency with those obtained by the INAA relative method

    New Approach For Calibration The Efficiency Of HpGe Detectors

    Get PDF
    This work evaluates the efficiency calibrating of HpGe detector coupled with Canberra GC3018 with Genie 2000 software and Ortec GEM25-76-XLB-C with Gamma Vision software; available at Neutron activation analysis laboratory in Malaysian Nuclear Agency (NM). The efficiency calibration curve was constructed from measurement of an IAEA, standard gamma–point sources set composed by 214Am, 57Co, 133Ba, 152Eu, 137Cs and 60Co. The efficiency calibrations were performed for three different geometries: 5, 10 and 15 cm distances from the end cap detector. The polynomial parameters functions were simulated through a computer program, MATLAB in order to find an accurate fit to the experimental data points. The efficiency equation was established from the known fitted parameters which allow for the efficiency evaluation at particular energy of interest. The study shows that significant deviations in the efficiency, depending on the source-detector distance and photon energ

    Stochastic Background Search Correlating ALLEGRO with LIGO Engineering Data

    Full text link
    We describe the role of correlation measurements between the LIGO interferometer in Livingston, LA, and the ALLEGRO resonant bar detector in Baton Rouge, LA, in searches for a stochastic background of gravitational waves. Such measurements provide a valuable complement to correlations between interferometers at the two LIGO sites, since they are sensitive in a different, higher, frequency band. Additionally, the variable orientation of the ALLEGRO detector provides a means to distinguish gravitational wave correlations from correlated environmental noise. We describe the analysis underway to set a limit on the strength of a stochastic background at frequencies near 900 Hz using ALLEGRO data and data from LIGO's E7 Engineering Run.Comment: 8 pages, 2 encapsulated PostScript figures, uses IOP class files, submitted to the proceedings of the 7th Gravitational Wave Data Analysis Workshop (which will be published in Classical and Quantum Gravity

    Rare events detected with a bulk acoustic wave high frequency gravitational wave antenna

    Get PDF
    This work describes the operation of a high frequency gravitational wave detector based on a cryogenic bulk acoustic wave cavity and reports observation of rare events during 153 days of operation over two separate experimental runs (run 1 and run 2). In both run 1 and run 2, two modes were simultaneously monitored. Across both runs, the third overtone of the fast shear mode (3B) operating at 5.506 MHz was monitored; whereas in run 1, the second mode was chosen to be the fifth overtone of the slow shear mode (5C) operating at 8.392 MHz. However, in run 2, the second mode was selected to be closer in frequency to the first mode; and it was chosen to be the third overtone of the slow shear mode (3C) operating at 4.993 MHz. Two strong events were observed as transients responding to energy deposition within acoustic modes of the cavity. The first event occurred during run 1 on 12 May 2019 (UTC), and it was observed in the 5.506 MHz mode; whereas the second mode at 8.392 MHz observed no event. During run 2, a second event occurred on 27 November 2019 (UTC) and was observed by both modes. Timings of the events were checked against available environmental observations as well as data from other detectors. Various possibilities explaining the origins of the events are discussed

    Assessment of the humification degree of peat soil under sago (Metroxylon sagu) cultivation based on Fourier Transform Infrared (FTIR) and Ultraviolet-Visible (UV-Vis) spectroscopic characteristics

    Get PDF
    Sago palm (Metroxylon sagu) is a tropical crop that can survive the acidic conditions of peat soil, which is cultivated at large scale in Sarawak (Malaysia). The performance of sago palm on deep peat is variable, and not all specimens are able to grow to maturity and produce a trunk. It is hypothesised that sago growth may be influenced by peat humification because a positive relationship between the fertility of peat soil and its degree of humification has been well reported. This article investigates the humification degree of peat soil used for cultivation of sago palms, as indicated by spectroscopic characteristics. The peat soil adjacent to trunking and non-trunking palms was sampled and compared with exposed uncultivated peat. The results showed that, where largely undecomposed woody material predominated in the underlying peat, degree of humification decreased with increasing depth. Uncultivated peat was more highly humified than cultivated peat because the latter was continuously replenished with new plant matter. On the basis of FTIR spectroscopy, no significant difference was found between cultivated peat sampled adjacent to trunking and non-trunking palms. On the other hand, the UV-Vis and FTIR data suggested lower humification degree in the underlying peat which may have led to inconsistent growth

    Synthesis and characterization of ultra small PbS nanorods in sucrose ester microemulsion

    Get PDF
    In the present study, we report for the first time the synthesis of ultra small PbS nanorods in a non-ionic sugar based water-in-oil (w/o) microemulsion system using food grade sucrose ester as surfactant. PbS was formed by mixing lead nitrate and thioacetamide in the water core of the microemulsion system. The as-prepared PbS nanorods were characterized by X-ray diffractometry (XRD), uv–visible absorption spectroscopy (UV–VIS), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The diameter of the PbS nanorods were found to be extremely small, which is in the range of 2.64 nm to 2.91 nm depending on reaction aging time. Spherical PbS nanoparticles were formed after 12 h and PbS nanorods were formed after more than 1 day of reaction aging time
    corecore