12 research outputs found
Investigation of the rebound number and compressive strength of concrete with quarry dust as fine aggregate
This article presents the consideration of relation between compressive strength and rebound number of concrete cooperating with quarry dust as fine aggregate (natural river sand was replaced by quarry dust at the rate of 0%, 25%, 50%, 75% and 100% by weight of fine aggregate). The properties of the tested concrete samples are w/c = 0.6, maximum size of coarse aggregate is 20 mm., cement contents are between 308 and 348 kg/m3, slumps range from 0 to 100 mm., the 28-day compressive strength from 14 to 30 MPa. It was found that the rebound number results were affected by quarry dust especially the standard deviator of rebound number. The cube compressive strength at 28 days and the supplementary curve from the instruction manual were discussed. Moreover, the prediction equation is proposed to estimate the compressive strength of concrete cooperating with quarry dust as fine aggregate
āļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāđāļāļĢāļĩāļĒāļāđāļāļĩāļĒāļāļāļ§āļēāļĄāđāļāđāļāļāļāļāļāļąāļāļĢāļąāļāļĐāļēāļĢāļēāļāļāļĩāđāļĄāļĩāļāļāļēāļāļāļĨāļāļāļĢāļēāļāļāļąāļāļāļ§āđāļēāļ āđāļĄāļ·āđāļāđāļāđāđāļāļ·āļāļĒāļāļąāļāđāļŠāļĢāļīāļĄāđāļŠāđāļāđāļĒāļāļģāļāļ§āļāļāđāļēāļāđ āļāđāļ§āļĒāļ§āļīāļāļĩāđāļāđāļāļāđāđāļāļĨāļīāđāļĄāļāļāđ
āļāļāļāļ§āļēāļĄāļāļĩāđāđāļāđāļāļāļēāļĢāļĻāļķāļāļĐāļēāļĢāļđāļāđāļāļāļāļēāļĢāļāļĢāļ°āļāļēāļĒāļāļ§āļēāļĄāđāļāđāļāļāļķāļāļāļĩāđāđāļāļīāļāļāļķāđāļāļ āļēāļĒāđāļāļāļĨāļāļāļĢāļēāļāļāļąāļ āđāļāļĒāļāļąāļ§āļāļĒāđāļēāļāđāļāļāļēāļĢāļĻāļķāļāļĐāļēāđāļāđāļāļāļąāļāļāļĢāļēāļĄāļāđāļāļĒāļĨāđāļēāļāļāļĩāđāļāļĩāđāļŦāļāļķāđāļ āđāļĨāļ°āļāļķāđāļāļĢāļđāļāđāļāđāļāđāļāļāļāļģāļĨāļāļāđāļāļĒāđāļĢāļīāđāļĄāļāļēāļāļ āļēāļāđāļāļĢāļāļŠāļĢāđāļēāļāđāļāļĒāļāļēāļĢāļāđāļēāļĒāļ āļēāļāļĢāļąāļāļŠāļĩāđāļāļāļāļĩāļĄāļāļāļĄāļāļīāļ§āđāļāļāđāļāđāļĄāļāļĢāļēāļāļāļĩ āļāļēāļāļāļąāđāļāļāļģāđāļāđāļāđāļāļāļāļģāļĨāļāļ āļāđāļ§āļĒāļĢāļ°āđāļāļĩāļĒāļāļ§āļīāļāļĩāđāļāđāļāļāđāđāļāļĨāļīāđāļĄāļāļāđ (āđāļāļĢāđāļāļĢāļĄ SolidWorks) āđāļāļĒāđāļāđāļāļĢāļđāļāđāļāļāļāļēāļĢāļāļđāļĢāļāļ°āđāļāđāļ 3 āļāļĢāļāļĩ āļāļ·āļ āđāļāļāļāļģāļĨāļāļāļāļĩāđ 1 āļāļđāļĢāļāļ° āļāđāļ§āļĒāđāļĢāļāļīāļāļāļāļĄāđāļāļŠāļīāļāļāđāļāđāļāļāļāļąāļ (Multicore Flow) āđāļāđāļēāļāļąāđāļ āđāļāļāļāļģāļĨāļāļāļāļĩāđ 2 āļāļđāļĢāļāļ°āļāđāļ§āļĒāđāļāļ·āļāļĒāļāļąāļāđāļŠāļĢāļīāļĄāđāļŠāđāļāđāļĒ 3 āļāļģāļāļ§āļ 1 āļāļąāļ āļĢāđāļ§āļĄāļāļąāļāđāļĢāļāļīāļāļāļāļĄāđāļāļŠāļīāļ (FRC Postec Plus no. 3, Multicore Flow) āđāļĨāļ°āđāļāļāļāļģāļĨāļāļāļāļĩāđ 3 āļāļđāļĢāļāļ°āļāđāļ§āļĒāđāļāļ·āļāļĒāļāļąāļāđāļŠāļĢāļīāļĄāđāļŠāđāļāđāļĒāđāļāļāļĢāđ 3 āļāļģāļāļ§āļ 1 āļāļąāļ āđāļāļāļĢāđ 0 āļāļģāļāļ§āļ 2 āļāļąāļ āļĢāđāļ§āļĄāļāļąāļāļāļēāļĢāļāđāļāđāļāļāļāļąāļāļāđāļ§āļĒāđāļĢāļāļīāļāļāļāļĄāđāļāļŠāļīāļ (FRC Postec Plus no. 3 & no. 0, Multicore Flow) āļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāļ§āļēāļĄāđāļāđāļāđāļāđāļāļāļāļģāļĨāļāļ āļāļģāđāļāļĒāđāļŦāđāđāļĢāļāļāļĢāļ°āļāļģ 1000 āļāļīāļ§āļāļąāļ āđāļāļĄāļļāļĄāđāļāļĩāļĒāļāļāļāļēāļ 45 āļāļāļĻāļē āļāļāļāļļāđāļĄāļĒāļāļāļāļąāļāļāđāļēāļāđāļāđāļĄāļāļāļāļāļĢāļāļāļāļąāļāđāļāļāļļāļāļĢāļđāļāđāļāļāļāļēāļĢāļāļđāļĢāļāļ°āļāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļāļāļ§āđāļē āđāļāļāļāļģāļĨāļāļāļāļąāđāļāļŠāļēāļĄāļāļĨāļļāđāļĄāđāļāļīāļāļāļ§āļēāļĄāđāļāđāļāļāļķāļāļŠāļđāļāļŠāļļāļāđāļāđāļāļ·āđāļāļāļąāļāļāļĢāļīāđāļ§āļāļŠāđāļ§āļāļāļķāđāļāļāļĨāļēāļāļĢāļēāļāļāļąāļ āļŠāļģāļŦāļĢāļąāļāļāļēāļĢāđāļāļĢāļĩāļĒāļāđāļāļĩāļĒāļāļāļ§āļēāļĄāđāļāđāļāđāļāđāļāđāļĨāļ°āļĢāļđāļāđāļāļāļāļēāļĢāļāļđāļĢāļāļ° āļāļāļ§āđāļē āđāļāļāļāļģāļĨāļāļāļāļĩāđ 2 āļĄāļĩāļāļ§āļēāļĄāđāļāđāļāļāļķāļāļāđāļāļĒāļāļĩāđāļŠāļļāļ āđāļāļāļāļ°āļāļĩāđāđāļāļāļāļģāļĨāļāļāļāļĩāđ 1 āļāļ§āļēāļĄāđāļāđāļāļāļķāļāļĄāļēāļāļāļĩāđāļŠāļļāļ āļāļēāļāļāļĨāļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāļ§āļēāļĄāđāļāđāļāļāļģāđāļŦāđāļāļāļ§āđāļē āļāļĢāļīāđāļ§āļāļāļĩāđāļĄāļĩāļāļ§āļēāļĄāđāļāđāļāļāļķāļāļŠāļđāļāļŠāļļāļāļāļĢāļāļāļąāļāļāļģāđāļŦāļāđāļāļāļēāļĢāđāļāļāļŦāļąāļāđāļāļāļēāļĢāļāļāļŠāļāļāļāđāļ§āļĒāļāļąāļ§āļāļĒāđāļēāļāļāļąāļāļāļĢāļīāļ āļāļĩāļāļāļąāđāļāļĢāļ°āļāļąāļāļāļ§āļēāļĄāđāļāđāļāļāļķāļāļāļĩāđāļāđāļāļĒāļāļ§āđāļēāļāļāļāđāļāļāļāļģāļĨāļāļāļāļĩāđ 2 āļāļĩāļāļ§āļēāļĄāļŦāļĄāļēāļĒāđāļāđāļ§āđāļēāđāļāđāļāļĢāļđāļāđāļāļāļāļĩāđāļāļ°āđāļāļāļŦāļąāļāļāđāļ§āļĒāđāļĢāļāļāļĩāđāļĄāļēāļāļāļĩāđāļŠāļļāļ āđāļāļĒāļĄāļĩāļāđāļēāļāļąāļāļĢāļēāļŠāđāļ§āļāļāļģāļĨāļąāļāļ§āļąāļŠāļāļļāļāđāļāļāļ§āļēāļĄāđāļāđāļāļāļķāļāļĄāļēāļāļāļāļ§āđāļēāđāļāļ·āļāļ 2 āđāļāđāļēāļāļāļāđāļāļāļāļģāļĨāļāļāļāļĩāđ 1āļāļģāļŠāļģāļāļąāļ: āļĢāļ°āđāļāļĩāļĒāļāļ§āļīāļāļĩāđāļāđāļāļāđāđāļāļĨāļīāđāļĄāļāļāđ Â āļāļēāļĢāļĢāļąāļāļĐāļēāļĢāļēāļāļāļąāļ Â āļāļ§āļēāļĄāđāļāđāļāļāļķāļ Â āđāļāļ·āļāļĒāļāļąāļāđāļŠāļĢāļīāļĄāđāļŠāđāļāđāļĒ Â āđāļĢāļāļīāļāļāļāļĄāđāļāļŠāļīāļStress distribution in flared root canal with various restoration are investigated by 3D finite element analysis (SolidWorks). Human first mandibular single-root premolars was scaned by cone beam computed tomography to obtain the three dimension in order to create the model. The finite element model of premolar teeth are divided into 3 groups; group 1 was restored with a resin composite core material (Multicore Flow), group 2 was restored with a single fiber post and resin composite core (FRC Postec Plus no. 3, Multicore flow), and group 3 was restored with 3 fiber posts and resin composite core (1 FRC Postec Plus no. 3 and 2 fiber posts no. 0, Multicore flow). All models were loaded by the force 1000 newton at 45 degree to horizontal axis.The analysis result of all tooth models showed the highest pricipal tensile stress concentrations in middle of the root. In addition, group 2 shows the lowest pricipal tensile stress while group 1 has the highest pricipal tensile stress. The fracture area in the real experimental is represented by the highest of the stress concentrations area in finite element analysis. Therefore, the lowest level of the pricipal tensile stress in group 2 means the strongest fracture resistance to compressive load. Moreover, factor of safety (FOS) of group 2 is more than group 1 almost 2 times.Keywords: Finite Element Analysis, Endodontically Treated Tooth, Tensile Strength, Fiber Post, Composite Resi
Investigation of the rebound number and compressive strength of concrete with quarry dust as fine aggregate
This article presents the consideration of relation between compressive strength and rebound number of concrete cooperating with quarry dust as fine aggregate (natural river sand was replaced by quarry dust at the rate of 0%, 25%, 50%, 75% and 100% by weight of fine aggregate). The properties of the tested concrete samples are w/c = 0.6, maximum size of coarse aggregate is 20 mm., cement contents are between 308 and 348 kg/m3, slumps range from 0 to 100 mm., the 28-day compressive strength from 14 to 30 MPa. It was found that the rebound number results were affected by quarry dust especially the standard deviator of rebound number. The cube compressive strength at 28 days and the supplementary curve from the instruction manual were discussed. Moreover, the prediction equation is proposed to estimate the compressive strength of concrete cooperating with quarry dust as fine aggregate