12 research outputs found

    Investigation of the rebound number and compressive strength of concrete with quarry dust as fine aggregate

    Full text link
    This article presents the consideration of relation between compressive strength and rebound number of concrete cooperating with quarry dust as fine aggregate (natural river sand was replaced by quarry dust at the rate of 0%, 25%, 50%, 75% and 100% by weight of fine aggregate). The properties of the tested concrete samples are w/c = 0.6, maximum size of coarse aggregate is 20 mm., cement contents are between 308 and 348 kg/m3, slumps range from 0 to 100 mm., the 28-day compressive strength from 14 to 30 MPa. It was found that the rebound number results were affected by quarry dust especially the standard deviator of rebound number. The cube compressive strength at 28 days and the supplementary curve from the instruction manual were discussed. Moreover, the prediction equation is proposed to estimate the compressive strength of concrete cooperating with quarry dust as fine aggregate

    āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļ„āļ§āļēāļĄāđ€āļ„āđ‰āļ™āļ‚āļ­āļ‡āļŸāļąāļ™āļĢāļąāļāļĐāļēāļĢāļēāļāļ—āļĩāđˆāļĄāļĩāļ‚āļ™āļēāļ”āļ„āļĨāļ­āļ‡āļĢāļēāļāļŸāļąāļ™āļāļ§āđ‰āļēāļ‡ āđ€āļĄāļ·āđˆāļ­āđƒāļŠāđ‰āđ€āļ”āļ·āļ­āļĒāļŸāļąāļ™āđ€āļŠāļĢāļīāļĄāđ€āļŠāđ‰āļ™āđƒāļĒāļˆāļģāļ™āļ§āļ™āļ•āđˆāļēāļ‡āđ† āļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāđ„āļŸāđ„āļ™āļ•āđŒāđ€āļ­āļĨāļīāđ€āļĄāļ™āļ•āđŒ

    Get PDF
    āļšāļ—āļ„āļ§āļēāļĄāļ™āļĩāđ‰āđ€āļ›āđ‡āļ™āļāļēāļĢāļĻāļķāļāļĐāļēāļĢāļđāļ›āđāļšāļšāļāļēāļĢāļāļĢāļ°āļˆāļēāļĒāļ„āļ§āļēāļĄāđ€āļ„āđ‰āļ™āļ”āļķāļ‡āļ—āļĩāđˆāđ€āļāļīāļ”āļ‚āļķāđ‰āļ™āļ āļēāļĒāđƒāļ™āļ„āļĨāļ­āļ‡āļĢāļēāļāļŸāļąāļ™ āđ‚āļ”āļĒāļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āđƒāļ™āļāļēāļĢāļĻāļķāļāļĐāļēāđ€āļ›āđ‡āļ™āļŸāļąāļ™āļāļĢāļēāļĄāļ™āđ‰āļ­āļĒāļĨāđˆāļēāļ‡āļ‹āļĩāđˆāļ—āļĩāđˆāļŦāļ™āļķāđˆāļ‡ āđāļĨāļ°āļ‚āļķāđ‰āļ™āļĢāļđāļ›āđ€āļ›āđ‡āļ™āđāļšāļšāļˆāļģāļĨāļ­āļ‡āđ‚āļ”āļĒāđ€āļĢāļīāđˆāļĄāļˆāļēāļāļ āļēāļžāđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āđ‚āļ”āļĒāļāļēāļĢāļ–āđˆāļēāļĒāļ āļēāļžāļĢāļąāļ‡āļŠāļĩāđ‚āļ„āļ™āļšāļĩāļĄāļ„āļ­āļĄāļžāļīāļ§āđ€āļ•āļ”āđ‚āļ—āđ‚āļĄāļāļĢāļēāļŸāļŸāļĩ āļˆāļēāļāļ™āļąāđ‰āļ™āļ—āļģāđ€āļ›āđ‡āļ™āđāļšāļšāļˆāļģāļĨāļ­āļ‡ āļ”āđ‰āļ§āļĒāļĢāļ°āđ€āļšāļĩāļĒāļšāļ§āļīāļ˜āļĩāđ„āļŸāđ„āļ™āļ•āđŒāđ€āļ­āļĨāļīāđ€āļĄāļ™āļ•āđŒ (āđ‚āļ›āļĢāđāļāļĢāļĄ SolidWorks) āđ‚āļ”āļĒāđāļšāđˆāļ‡āļĢāļđāļ›āđāļšāļšāļāļēāļĢāļšāļđāļĢāļ“āļ°āđ€āļ›āđ‡āļ™ 3 āļāļĢāļ“āļĩ āļ„āļ·āļ­ āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļ—āļĩāđˆ 1 āļšāļđāļĢāļ“āļ° āļ”āđ‰āļ§āļĒāđ€āļĢāļ‹āļīāļ™āļ„āļ­āļĄāđ‚āļžāļŠāļīāļ•āļāđˆāļ­āđāļāļ™āļŸāļąāļ™ (Multicore Flow) āđ€āļ—āđˆāļēāļ™āļąāđ‰āļ™ āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļ—āļĩāđˆ 2 āļšāļđāļĢāļ“āļ°āļ”āđ‰āļ§āļĒāđ€āļ”āļ·āļ­āļĒāļŸāļąāļ™āđ€āļŠāļĢāļīāļĄāđ€āļŠāđ‰āļ™āđƒāļĒ 3 āļˆāļģāļ™āļ§āļ™ 1 āļ­āļąāļ™ āļĢāđˆāļ§āļĄāļāļąāļšāđ€āļĢāļ‹āļīāļ™āļ„āļ­āļĄāđ‚āļžāļŠāļīāļ• (FRC Postec Plus no. 3, Multicore Flow) āđāļĨāļ°āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļ—āļĩāđˆ 3 āļšāļđāļĢāļ“āļ°āļ”āđ‰āļ§āļĒāđ€āļ”āļ·āļ­āļĒāļŸāļąāļ™āđ€āļŠāļĢāļīāļĄāđ€āļŠāđ‰āļ™āđƒāļĒāđ€āļšāļ­āļĢāđŒ 3 āļˆāļģāļ™āļ§āļ™ 1 āļ­āļąāļ™ āđ€āļšāļ­āļĢāđŒ 0 āļˆāļģāļ™āļ§āļ™ 2 āļ­āļąāļ™ āļĢāđˆāļ§āļĄāļāļąāļšāļāļēāļĢāļāđˆāļ­āđāļāļ™āļŸāļąāļ™āļ”āđ‰āļ§āļĒāđ€āļĢāļ‹āļīāļ™āļ„āļ­āļĄāđ‚āļžāļŠāļīāļ• (FRC Postec Plus no. 3 & no. 0, Multicore Flow) āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ„āļ§āļēāļĄāđ€āļ„āđ‰āļ™āđƒāļ™āđāļšāļšāļˆāļģāļĨāļ­āļ‡ āļ—āļģāđ‚āļ”āļĒāđƒāļŦāđ‰āđāļĢāļ‡āļāļĢāļ°āļ—āļģ 1000 āļ™āļīāļ§āļ•āļąāļ™ āđƒāļ™āļĄāļļāļĄāđ€āļ­āļĩāļĒāļ‡āļ‚āļ™āļēāļ” 45 āļ­āļ‡āļĻāļē āļšāļ™āļ›āļļāđˆāļĄāļĒāļ­āļ”āļŸāļąāļ™āļ”āđ‰āļēāļ™āđāļāđ‰āļĄāļ‚āļ­āļ‡āļ„āļĢāļ­āļšāļŸāļąāļ™āđƒāļ™āļ—āļļāļāļĢāļđāļ›āđāļšāļšāļāļēāļĢāļšāļđāļĢāļ“āļ°āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļžāļšāļ§āđˆāļē āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļ—āļąāđ‰āļ‡āļŠāļēāļĄāļāļĨāļļāđˆāļĄāđ€āļāļīāļ”āļ„āļ§āļēāļĄāđ€āļ„āđ‰āļ™āļ”āļķāļ‡āļŠāļđāļ‡āļŠāļļāļ”āđƒāļ™āđ€āļ™āļ·āđ‰āļ­āļŸāļąāļ™āļšāļĢāļīāđ€āļ§āļ“āļŠāđˆāļ§āļ™āļāļķāđˆāļ‡āļāļĨāļēāļ‡āļĢāļēāļāļŸāļąāļ™ āļŠāļģāļŦāļĢāļąāļšāļāļēāļĢāđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļ„āļ§āļēāļĄāđ€āļ„āđ‰āļ™āđƒāļ™āđāļ•āđˆāļĨāļ°āļĢāļđāļ›āđāļšāļšāļāļēāļĢāļšāļđāļĢāļ“āļ° āļžāļšāļ§āđˆāļē āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļ—āļĩāđˆ 2 āļĄāļĩāļ„āļ§āļēāļĄāđ€āļ„āđ‰āļ™āļ”āļķāļ‡āļ™āđ‰āļ­āļĒāļ—āļĩāđˆāļŠāļļāļ” āđƒāļ™āļ‚āļ“āļ°āļ—āļĩāđˆāđāļšāļšāļˆāļģāļĨāļ­āļ‡āļ—āļĩāđˆ 1 āļ„āļ§āļēāļĄāđ€āļ„āđ‰āļ™āļ”āļķāļ‡āļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ” āļˆāļēāļāļœāļĨāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ„āļ§āļēāļĄāđ€āļ„āđ‰āļ™āļ—āļģāđƒāļŦāđ‰āļžāļšāļ§āđˆāļē āļšāļĢāļīāđ€āļ§āļ“āļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāđ€āļ„āđ‰āļ™āļ”āļķāļ‡āļŠāļđāļ‡āļŠāļļāļ”āļ•āļĢāļ‡āļāļąāļšāļ•āļģāđāļŦāļ™āđˆāļ‡āļāļēāļĢāđāļ•āļāļŦāļąāļāđƒāļ™āļāļēāļĢāļ—āļ”āļŠāļ­āļšāļ”āđ‰āļ§āļĒāļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļŸāļąāļ™āļˆāļĢāļīāļ‡ āļ­āļĩāļāļ—āļąāđ‰āļ‡āļĢāļ°āļ”āļąāļšāļ„āļ§āļēāļĄāđ€āļ„āđ‰āļ™āļ”āļķāļ‡āļ—āļĩāđˆāļ™āđ‰āļ­āļĒāļāļ§āđˆāļēāļ‚āļ­āļ‡āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļ—āļĩāđˆ 2 āļ•āļĩāļ„āļ§āļēāļĄāļŦāļĄāļēāļĒāđ„āļ”āđ‰āļ§āđˆāļēāđ€āļ›āđ‡āļ™āļĢāļđāļ›āđāļšāļšāļ—āļĩāđˆāļˆāļ°āđāļ•āļāļŦāļąāļāļ”āđ‰āļ§āļĒāđāļĢāļ‡āļ—āļĩāđˆāļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ” āđ‚āļ”āļĒāļĄāļĩāļ„āđˆāļēāļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļāļģāļĨāļąāļ‡āļ§āļąāļŠāļ”āļļāļ•āđˆāļ­āļ„āļ§āļēāļĄāđ€āļ„āđ‰āļ™āļ”āļķāļ‡āļĄāļēāļāļāļāļ§āđˆāļēāđ€āļāļ·āļ­āļš 2 āđ€āļ—āđˆāļēāļ‚āļ­āļ‡āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļ—āļĩāđˆ 1āļ„āļģāļŠāļģāļ„āļąāļ: āļĢāļ°āđ€āļšāļĩāļĒāļšāļ§āļīāļ˜āļĩāđ„āļŸāđ„āļ™āļ•āđŒāđ€āļ­āļĨāļīāđ€āļĄāļ™āļ•āđŒ  āļāļēāļĢāļĢāļąāļāļĐāļēāļĢāļēāļāļŸāļąāļ™  āļ„āļ§āļēāļĄāđ€āļ„āđ‰āļ™āļ”āļķāļ‡  āđ€āļ”āļ·āļ­āļĒāļŸāļąāļ™āđ€āļŠāļĢāļīāļĄāđ€āļŠāđ‰āļ™āđƒāļĒ  āđ€āļĢāļ‹āļīāļ™āļ„āļ­āļĄāđ‚āļžāļŠāļīāļ•Stress distribution in flared root canal with various restoration are investigated by 3D finite element analysis (SolidWorks). Human first mandibular single-root premolars was scaned by cone beam computed tomography to obtain the three dimension in order to create the model. The finite element model of premolar teeth are divided into 3 groups; group 1 was restored with a resin composite core material (Multicore Flow), group 2 was restored with a single fiber post and resin composite core (FRC Postec Plus no. 3, Multicore flow), and group 3 was restored with 3 fiber posts and resin composite core (1 FRC Postec Plus no. 3 and 2 fiber posts no. 0, Multicore flow). All models were loaded by the force 1000 newton at 45 degree to horizontal axis.The analysis result of all tooth models showed the highest pricipal tensile stress concentrations in middle of the root. In addition, group 2 shows the lowest pricipal tensile stress while group 1 has the highest pricipal tensile stress. The fracture area in the real experimental is represented by the highest of the stress concentrations area in finite element analysis. Therefore, the lowest level of the pricipal tensile stress in group 2 means the strongest fracture resistance to compressive load. Moreover, factor of safety (FOS) of group 2 is more than group 1 almost 2 times.Keywords: Finite Element Analysis, Endodontically Treated Tooth, Tensile Strength, Fiber Post, Composite Resi

    Investigation of the rebound number and compressive strength of concrete with quarry dust as fine aggregate

    No full text
    This article presents the consideration of relation between compressive strength and rebound number of concrete cooperating with quarry dust as fine aggregate (natural river sand was replaced by quarry dust at the rate of 0%, 25%, 50%, 75% and 100% by weight of fine aggregate). The properties of the tested concrete samples are w/c = 0.6, maximum size of coarse aggregate is 20 mm., cement contents are between 308 and 348 kg/m3, slumps range from 0 to 100 mm., the 28-day compressive strength from 14 to 30 MPa. It was found that the rebound number results were affected by quarry dust especially the standard deviator of rebound number. The cube compressive strength at 28 days and the supplementary curve from the instruction manual were discussed. Moreover, the prediction equation is proposed to estimate the compressive strength of concrete cooperating with quarry dust as fine aggregate
    corecore