120 research outputs found

    Training the inspiratory muscles improves running performance when carrying a 25 kg thoracic load in a backpack.

    Get PDF
    Load carriage (LC) exercise in physically demanding occupations is typically characterised by periods of low-intensity steady-state exercise and short duration, high-intensity exercise while carrying an external mass in a backpack; this form of exercise is also known as LC exercise. This induces inspiratory muscle fatigue and reduces whole-body performance. Accordingly we investigated the effect of inspiratory muscle training (IMT, 50% maximal inspiratory muscle pressure (PImax) twice daily for six week) upon running time-trial performance with thoracic LC. Nineteen healthy males formed a pressure threshold IMT (n = 10) or placebo control group (PLA; n = 9) and performed 60 min LC exercise (6.5 km h(-1)) followed by a 2.4 km running time trial (LCTT) either side of a double-blind six week intervention. Prior to the intervention, PImax was reduced relative to baseline, post-LC and post-LCTT in both groups (pooled data: 13 ± 7% and 16 ± 8%, respectively, p  .05). In IMT only, heart rate and perceptual responses were reduced post-LC (p < .05). Time-trial performance was unchanged post-PLA and improved 8 ± 4% after IMT (p < .05). In summary, when wearing a 25 kg backpack, IMT attenuated the cardiovascular and perceptual responses to steady-state exercise and improved high-intensity time-trial performance which we attribute in part to reduced relative work intensity of the inspiratory muscles due to improved inspiratory muscle strength. These findings have real-world implications for occupational contexts.N/

    Effect of Beta-Adrenergic Blockade on Coronary Blood Flow during Isometric Exercise in Older Adults

    Get PDF
    Ross A., Gao Z., Heffernan M., Leuenberger U., Sinoway L., Muller M. Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA The rise in heart rate (HR) and cardiac contractility during exercise is due to activation of myocardial b-adrenergic receptors. b-receptors are also located on coronary blood vessels and are thought to participate in exercise hyperemia, thereby helping to preserve the balance between myocardial oxygen supply and demand. However, experimental data in human subjects are lacking. Purpose: We hypothesized that intravenous b-adrenergic blockade would attenuate the reflex tachycardia and coronary hyperemia in response to isometric handgrip (i.e., a stimulus known to increase both cardiac metabolism and coronary blood flow). Methods: Six men (66 ± 2 yrs) performed isometric handgrip exercise at 40% of maximal voluntary contraction for 2 minutes after receiving intravenous propranolol; control trials occurred on separate days. HR and blood pressure were monitored continuously and rate-pressure product (RPP) was calculated as an index of myocardial oxygen demand. Coronary blood flow velocity (CBFV) was measured by transthoracic Doppler echocardiography (left anterior descending coronary artery) and coronary vascular resistance (CVR) was calculated. The ratio of RPP/CVR was used as an index of myocardial oxygen supply. Physiological parameters were statistically compared at baseline and in response to exercise between conditions. Results: Refer to Table. Conclusion: The novel finding of this study is that under resting conditions propranolol raises coronary resistance (impaired oxygen supply) despite also lowering cardiac metabolism (reduced oxygen demand). These data support the concept that coronary b-adrenergic receptors contribute to myocardial blood flow regulation both at rest and during exercise in humans. Supported by NIH P01 HL096570 and UL1 TR00012

    Brachial artery characteristics and micro-vascular filtration capacity in rock climbers

    Get PDF
    Rock climbers perform repeated isometric forearm muscle contractions subjecting the vasculature to repeated ischaemia and distorted haemodynamic signals. This study investigated forearm vascular characteristics in rock climbers compared to healthy untrained controls. Eight climbers (CLIMB) (BMI; 22.3, s = 2.0 kg/m2, isometric handgrip strength; 46, s = 8 kg) were compared against eight untrained controls (CON) (BMI; 23.8, s = 2.6 kg/m2, isometric handgrip strength; 37, s = 9 kg). Brachial artery diameter and blood flow were measured, using Doppler ultrasound, at rest and following 5-mins ischaemia (peak diameter) and ischaemic exercise (maximal dilation) to calculate flow mediated dilation (FMD) and dilatory capacity (DC). Capillary filtration capacity was assessed using venous occlusion plethysmography. Resting (4.30, s = 0.26 vs. 3.79, s = 0.39 mm), peak (4.67, s = 0.31 vs. 4.12, s = 0.45 mm) and maximal (5.14, s = 0.42 vs. 4.35, s = 0.47 mm) diameters were greater (P < 0.05) in CLIMB than CON, respectively, despite no difference in FMD (9.2, s = 2.6 vs. 8.7, s = 2.9%). Peak reactive hyperaemic blood flow (1136, s = 504 vs. 651, s = 221 ml/min) and capillary filtration capacity (3.8, s = 0.9 vs. 5.2, s = 0.7 ml.min−1.mmHg−1.100 ml tissue−1 × 10−3) were greater (P < 0.05) in CLIMB compared to CON, respectively. Rock climbers exhibit structural vascular adaptation compared to untrained control participants but have similar vascular function. This may contribute to the enhanced ability of climbers to perform repeated isometric contractions

    The effects of upper and lower limb exercise on the microvascular reactivity in limited cutaneous systemic sclerosis patients

    Get PDF
    Background: Aerobic exercise in general and high intensity interval training (HIIT) specifically is known to improve vascular function in a range of clinical conditions. HIIT in particular has demonstrated improvements in clinical outcomes, in conditions that have a strong macroangiopathic component. Nevertheless, the effect of HIIT on microcirculation in systemic sclerosis (SSc) patients is yet to be investigated. Therefore, the purpose of the study was to compare the effects of two HIIT protocols (cycle and arm cranking) on the microcirculation of the digital area in SSc patients. Methods: Thirty four limited cutaneous SSc patients (65.3 ± 11.6 years old) were randomly allocated in three groups (cycling, arm cranking and control group). The exercise groups underwent a twelve-week exercise program twice per week. All patients performed the baseline and post-exercise intervention measurements where physical fitness, functional ability, transcutaneous oxygen tension (ΔtcpO2), body composition and quality of life were assessed. Endothelial-dependent as well as-independent vasodilation were assessed in the middle and index fingers using LDF and incremental doses of acetylcholine (ACh) and sodium nitroprusside (SNP). Cutaneous flux data were expressed as cutaneous vascular conductance (CVC). Results: Peak oxygen uptake increased in both exercise groups (p<0.01, d=1.36). ΔtcpO2 demonstrated an increase in the arm cranking group only, with a large effect, but not found statistically significant,(p=0.59, d=0.93). Endothelial-dependent vasodilation improvement was greater in the arm cranking (p<0.05, d=1.07) in comparison to other groups. Both exercise groups improved life satisfaction (p<0.001) as well as reduced discomfort and pain due to Raynaud's phenomenon (p<0.05). Arm cranking seems to be the preferred mode of exercise for study participants as compared to cycling (p<0.05). No changes were observed in the body composition or the functional ability in both exercise groups. Conclusion: Our results suggest that arm cranking has the potential to improve the microvascular endothelial function in SSc patients. Also notably, our recommended training dose (e.g., a 12-week HIIT program, twice per week), appeared to be sufficient and tolerable for this population. Future research should focus on exploring the feasibility of a combined exercise such as aerobic and resistance training by assessing individual's experience and the quality of life in SSc patients. Trial registration: ClinicalTrials.gov (NCT number): NCT03058887, February 23, 2017, https://clinicaltrials.gov/ct2/show/NCT03058887?term=NCT03058887&rank=1 Key words: High intensity interval training, vascular function, quality of lif

    Impact of inactivity and exercise on the vasculature in humans

    Get PDF
    The effects of inactivity and exercise training on established and novel cardiovascular risk factors are relatively modest and do not account for the impact of inactivity and exercise on vascular risk. We examine evidence that inactivity and exercise have direct effects on both vasculature function and structure in humans. Physical deconditioning is associated with enhanced vasoconstrictor tone and has profound and rapid effects on arterial remodelling in both large and smaller arteries. Evidence for an effect of deconditioning on vasodilator function is less consistent. Studies of the impact of exercise training suggest that both functional and structural remodelling adaptations occur and that the magnitude and time-course of these changes depends upon training duration and intensity and the vessel beds involved. Inactivity and exercise have direct “vascular deconditioning and conditioning” effects which likely modify cardiovascular risk

    Vascular Remodeling in Health and Disease

    Get PDF
    The term vascular remodeling is commonly used to define the structural changes in blood vessel geometry that occur in response to long-term physiologic alterations in blood flow or in response to vessel wall injury brought about by trauma or underlying cardiovascular diseases.1, 2, 3, 4 The process of remodeling, which begins as an adaptive response to long-term hemodynamic alterations such as elevated shear stress or increased intravascular pressure, may eventually become maladaptive, leading to impaired vascular function. The vascular endothelium, owing to its location lining the lumen of blood vessels, plays a pivotal role in regulation of all aspects of vascular function and homeostasis.5 Thus, not surprisingly, endothelial dysfunction has been recognized as the harbinger of all major cardiovascular diseases such as hypertension, atherosclerosis, and diabetes.6, 7, 8 The endothelium elaborates a variety of substances that influence vascular tone and protect the vessel wall against inflammatory cell adhesion, thrombus formation, and vascular cell proliferation.8, 9, 10 Among the primary biologic mediators emanating from the endothelium is nitric oxide (NO) and the arachidonic acid metabolite prostacyclin [prostaglandin I2 (PGI2)], which exert powerful vasodilatory, antiadhesive, and antiproliferative effects in the vessel wall
    corecore