1,377 research outputs found

    Grid infrastructures for secure access to and use of bioinformatics data: experiences from the BRIDGES project

    Get PDF
    The BRIDGES project was funded by the UK Department of Trade and Industry (DTI) to address the needs of cardiovascular research scientists investigating the genetic causes of hypertension as part of the Wellcome Trust funded (£4.34M) cardiovascular functional genomics (CFG) project. Security was at the heart of the BRIDGES project and an advanced data and compute grid infrastructure incorporating latest grid authorisation technologies was developed and delivered to the scientists. We outline these grid infrastructures and describe the perceived security requirements at the project start including data classifications and how these evolved throughout the lifetime of the project. The uptake and adoption of the project results are also presented along with the challenges that must be overcome to support the secure exchange of life science data sets. We also present how we will use the BRIDGES experiences in future projects at the National e-Science Centre

    Tool support for security-oriented virtual research collaborations

    Get PDF
    Collaboration is at the heart of e-Science and e-Research more generally. Successful collaborations must address both the needs of the end user researchers and the providers that make resources available. Usability and security are two fundamental requirements that are demanded by many collaborations and both concerns must be considered from both the researcher and resource provider perspective. In this paper we outline tools and methods developed at the National e-Science Centre (NeSC) that provide users with seamless, secure access to distributed resources through security-oriented research environments, whilst also allowing resource providers to define and enforce their own local access and usage policies through intuitive user interfaces. We describe these tools and illustrate their application in the ESRC-funded Data Management through e-Social Science (DAMES) and the JISC-funded SeeGEO projects

    On the Interpretation of Supernova Light Echo Profiles and Spectra

    Full text link
    The light echo systems of historical supernovae in the Milky Way and local group galaxies provide an unprecedented opportunity to reveal the effects of asymmetry on observables, particularly optical spectra. Scattering dust at different locations on the light echo ellipsoid witnesses the supernova from different perspectives and the light consequently scattered towards Earth preserves the shape of line profile variations introduced by asymmetries in the supernova photosphere. However, the interpretation of supernova light echo spectra to date has not involved a detailed consideration of the effects of outburst duration and geometrical scattering modifications due to finite scattering dust filament dimension, inclination, and image point-spread function and spectrograph slit width. In this paper, we explore the implications of these factors and present a framework for future resolved supernova light echo spectra interpretation, and test it against Cas A and SN 1987A light echo spectra. We conclude that the full modeling of the dimensions and orientation of the scattering dust using the observed light echoes at two or more epochs is critical for the correct interpretation of light echo spectra. Indeed, without doing so one might falsely conclude that differences exist when none are actually present.Comment: 18 pages, 22 figures, accepted for publication in Ap

    Secure, performance-oriented data management for nanoCMOS electronics

    Get PDF
    The EPSRC pilot project Meeting the Design Challenges of nanoCMOS Electronics (nanoCMOS) is focused upon delivering a production level e-Infrastructure to meet the challenges facing the semiconductor industry in dealing with the next generation of ‘atomic-scale’ transistor devices. This scale means that previous assumptions on the uniformity of transistor devices in electronics circuit and systems design are no longer valid, and the industry as a whole must deal with variability throughout the design process. Infrastructures to tackle this problem must provide seamless access to very large HPC resources for computationally expensive simulation of statistic ensembles of microscopically varying physical devices, and manage the many hundreds of thousands of files and meta-data associated with these simulations. A key challenge in undertaking this is in protecting the intellectual property associated with the data, simulations and design process as a whole. In this paper we present the nanoCMOS infrastructure and outline an evaluation undertaken on the Storage Resource Broker (SRB) and the Andrew File System (AFS) considering in particular the extent that they meet the performance and security requirements of the nanoCMOS domain. We also describe how metadata management is supported and linked to simulations and results in a scalable and secure manner

    Enabling quantitative data analysis through e-infrastructures

    Get PDF
    This paper discusses how quantitative data analysis in the social sciences can engage with and exploit an e-Infrastructure. We highlight how a number of activities which are central to quantitative data analysis, referred to as ‘data management’, can benefit from e-infrastructure support. We conclude by discussing how these issues are relevant to the DAMES (Data Management through e-Social Science) research Node, an ongoing project that aims to develop e-Infrastructural resources for quantitative data analysis in the social sciences

    The elements of a computational infrastructure for social simulation

    Get PDF
    Applications of simulation modelling in social science domains are varied and increasingly widespread. The effective deployment of simulation models depends on access to diverse datasets, the use of analysis capabilities, the ability to visualize model outcomes and to capture, share and re-use simulations as evidence in research and policy-making. We describe three applications of e-social science that promote social simulation modelling, data management and visualization. An example is outlined in which the three components are brought together in a transport planning context. We discuss opportunities and benefits for the combination of these and other components into an e-infrastructure for social simulation and review recent progress towards the establishment of such an infrastructure

    Integrating security solutions to support nanoCMOS electronics research

    Get PDF
    The UK Engineering and Physical Sciences Research Council (EPSRC) funded Meeting the Design Challenges of nanoCMOS Electronics (nanoCMOS) is developing a research infrastructure for collaborative electronics research across multiple institutions in the UK with especially strong industrial and commercial involvement. Unlike other domains, the electronics industry is driven by the necessity of protecting the intellectual property of the data, designs and software associated with next generation electronics devices and therefore requires fine-grained security. Similarly, the project also demands seamless access to large scale high performance compute resources for atomic scale device simulations and the capability to manage the hundreds of thousands of files and the metadata associated with these simulations. Within this context, the project has explored a wide range of authentication and authorization infrastructures facilitating compute resource access and providing fine-grained security over numerous distributed file stores and files. We conclude that no single security solution meets the needs of the project. This paper describes the experiences of applying X.509-based certificates and public key infrastructures, VOMS, PERMIS, Kerberos and the Internet2 Shibboleth technologies for nanoCMOS security. We outline how we are integrating these solutions to provide a complete end-end security framework meeting the demands of the nanoCMOS electronics domain

    The Land Conservation Plan for New Hampshire\u27s Coastal Watershed

    Get PDF
    Spanning 990 square miles and 46 towns, New Hampshire’s coastal watersheds harbor exceptional and irreplaceable natural, cultural, recreational and scenic resources (Figure 1). To advance the long-term protection of these resources, the State of New Hampshire, acting through the NH Coastal Program and the NH Estuaries Project, sought to develop a comprehensive, science-based land conservation plan for our coastal watersheds. The State engaged a partnership of The Nature Conservancy, Society for the Protection of New Hampshire Forests, Rockingham Planning Commission, and Strafford Regional Planning Commission to develop the plan. The New Hampshire Charitable Foundation’s Piscataqua Region supported this effort as a regional approach to setting land conservation priorities and strategies, and provided substantial matching funds. Southeastern New Hampshire is changing before our eyes. The region’s forests, wildlife habitat, clean water, and scenic vistas are increasingly threatened by sprawling development, roads, and other irreversible land use changes. Over the past 36 years, in Rockingham and Strafford Counties, an average of 2,230 acres per year has been converted from undeveloped land to a developed condition. And there is no indication that the pace of development will slow in the foreseeable future. The two Counties are projected to add more than 100,000 new residents from 2000 to 2025, and land values continue to rise steeply. With this conversion comes the loss of important natural resource values provided by undeveloped land, especially for plant and wildlife habitat, clean water, and other “ecological services.” To ensure a healthy environment into the future, it is essential that communities identify, retain, and protect the remaining undeveloped lands and waters that support the most important of these natural resource values and functions. Fortunately, it is not too late to protect the essential natural resources of Great Bay, Hampton Harbor, and the many important watersheds feeding into New Hampshire’s coastline. Thanks to the foresight and dedicated efforts of communities, citizens, conservation organizations and public agencies, more than nine percent of our coastal watersheds are permanently conserved. Many municipalities and communities have embraced land conservation through open space bonds, master plans, and local ordinances. New federal funds, such as the Coastal and Estuarine Land Conservation program, are available for conservation in the coastal watersheds. These protected lands and waters form the basis of a network of conservation areas that will help to safeguard our most critical natural resources over time. Now, more than ever, coastal New Hampshire communities need to ensure that they are making smart, enduring conservation investments in land protection and other effective local and regional strategies to have the greatest and most long-lasting beneficial impact on coastal Now, more than ever, coastal New Hampshire communities need to ensure that they are making smart, enduring conservation investments in land protection and other effective local and regional strategies to have the greatest and most long-lasting beneficial impact on coasta

    Network of Earthquakes and Recurrences Therein

    Full text link
    We quantify the correlation between earthquakes and use the same to distinguish between relevant causally connected earthquakes. Our correlation metric is a variation on the one introduced by Baiesi and Paczuski (2004). A network of earthquakes is constructed, which is time ordered and with links between the more correlated ones. Data pertaining to the California region has been used in the study. Recurrences to earthquakes are identified employing correlation thresholds to demarcate the most meaningful ones in each cluster. The distribution of recurrence lengths and recurrence times are analyzed subsequently to extract information about the complex dynamics. We find that the unimodal feature of recurrence lengths helps to associate typical rupture lengths with different magnitude earthquakes. The out-degree of the network shows a hub structure rooted on the large magnitude earthquakes. In-degree distribution is seen to be dependent on the density of events in the neighborhood. Power laws are also obtained with recurrence time distribution agreeing with the Omori law.Comment: 17 pages, 5 figure
    corecore